
Agilent Technologies

Agilent Acqiris
Instruments

Programmer’s Reference
Manual: Agilent Acqiris
Instruments

November 2009

Release J-RevA

U1092-90002

Notices
© Agilent Technologies, Inc. 2009

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

U1092-90002

Edition

Edition, November 27, 2009

Printed in USA

Agilent Technologies, Inc.
1400 Fountaingrove Pkwy
Santa Rosa, CA 95403

Warranty

The material contained in this doc-
ument is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicable law, Agilent disclaims
all warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of mer-
chantability and fitness for a par-
ticular purpose. Agilent shall not
be liable for errors or for incidental
or consequential damages in con-
nection with the furnishing, use, or
performance of this document or of
any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the mate-
rial in this document that conflict
with these terms, the warranty
terms in the separate agreement
shall control.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance
of a U.S. Government prime contract or
subcontract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014

(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S.
Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment users will receive no greater than
Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or loss of
important data. Do not proceed
beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice,
or the like that, if not correctly
performed or adhered to, could
result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indi-
cated conditions are fully
understood and met.

Programmer’s Reference Manual 3

Foreword
Instrumentation firmware is thoroughly tested and thought to be functional

but it is supplied “as is” with no warranty for specified performance. No

responsibility is assumed for the use or the reliability of software, firmware

or any equipment that is not supplied by Agilent or its affiliated companies.

You can download the latest version of this manual from

http://www.agilent.com/ by clicking on Manuals in the Technical Support

section and then entering a model number. You can also visit our web site at

http://www.agilent.com/find/acqiris. At Agilent we appreciate and

encourage customer input. If you have a suggestion related to the content

of this manual or the presentation of information, please contact your local

Agilent Acqiris product line representative or the dedicated Agilent Acqiris

Technical Support (ACQIRIS_SUPPORT@agilent.com).

Acqiris Product Line Information

USA (800) 829-4444

Asia - Pacific 61 3 9210 2890

Europe 41 (22) 884 32 90

4 Programmer’s Reference Manual

5 Programmer’s Reference Manual

1

TABLE OF CONTENTS

Foreword 3

TABLE OF CONTENTS 5

1 Introduction

Message to the User 9
Using this Manual 9
Conventions Used in This Manual 11
Warning Regarding Medical Use 12
Warranty 12
Warranty and Repair Return Procedure, Assistance and

Support 12
System Requirements 12

2 Device Driver Function Reference

Status values and Error codes 13
API Function classification 17

AcqirisInterface.h functions 18
AcqirisD1Interface.h functions 19
AcqirisT3Interface.h functions 21

API Function descriptions 22
Acqrs_calibrate 22
Acqrs_calibrateCancel 23
Acqrs_calibrateEx 24
Acqrs_calLoad 26
Acqrs_calRequired 28
Acqrs_calSave 30
Acqrs_close 32
Acqrs_closeAll 33
Acqrs_configLogicDevice 34
Acqrs_errorMessage 36
Acqrs_getDevType 38
Acqrs_getDevTypeByIndex 39
Acqrs_getInstrumentData 40
Acqrs_getInstrumentInfo 41
Acqrs_getNbrChannels 44
Acqrs_getNbrInstruments 45
Acqrs_getVersion 46
Acqrs_init 47
Acqrs_InitWithOptions 49
Acqrs_logicDeviceIO 51

6 Programmer’s Reference Manual

1

Acqrs_powerSystem 53
Acqrs_reset 54
Acqrs_resetMemory 55
Acqrs_resumeControl 56
Acqrs_setAttributeString 58
Acqrs_setLEDColor 59
Acqrs_setSimulationOptions 60
Acqrs_suspendControl 61
 AcqrsD1_accumulateData 63
AcqrsD1_acqDone 65
AcqrsD1_acquire 66
AcqrsD1_acquireEx 67
AcqrsD1_averagedData 68
AcqrsD1_bestNominalSamples 71
AcqrsD1_bestSampInterval 73
AcqrsD1_calibrate (DEPRECATED) 75
AcqrsD1_calibrateEx (DEPRECATED) 76
AcqrsD1_close (DEPRECATED) 78
AcqrsD1_closeAll (DEPRECATED) 79
AcqrsD1_configAvgConfig 80
AcqrsD1_configAvgConfigInt32 87
AcqrsD1_configAvgConfigReal64 93
AcqrsD1_configChannelCombination 96
AcqrsD1_configControlIO 98
AcqrsD1_configExtClock 102
AcqrsD1_configFCounter 104
AcqrsD1_configHorizontal 106
AcqrsD1_configLogicDevice (DEPRECATED) 108
AcqrsD1_configMemory 110
AcqrsD1_configMemoryEx 111
AcqrsD1_configMode 113
AcqrsD1_configMultiInput 116
AcqrsD1_configSetupArray 117
AcqrsD1_configTrigClass 119
AcqrsD1_configTrigSource 121
AcqrsD1_configTrigTV 123
AcqrsD1_configVertical 125
 AcqrsD1_errorMessage 127
AcqrsD1_errorMessageEx 128
AcqrsD1_forceTrig 130
AcqrsD1_forceTrigEx 131
AcqrsD1_freeBank 133
AcqrsD1_getAvgConfig 134
AcqrsD1_getAvgConfigInt32 136

1

Programmer’s Reference Manual 7

AcqrsD1_getAvgConfigReal64 138
AcqrsD1_getChannelCombination 140
AcqrsD1_getControlIO 142
AcqrsD1_getExtClock 145
AcqrsD1_getFCounter 147
AcqrsD1_getHorizontal 149
AcqrsD1_getInstrumentData (DEPRECATED) 151
AcqrsD1_getInstrumentInfo (DEPRECATED) 152
AcqrsD1_getMemory 155
AcqrsD1_getMemoryEx 157
AcqrsD1_getMode 159
AcqrsD1_getMultiInput 161
AcqrsD1_getNbrChannels (DEPRECATED) 163
AcqrsD1_getNbrPhysicalInstruments (DEPRECATED)
164
AcqrsD1_getSetupArray 165
AcqrsD1_getTrigClass 167
AcqrsD1_getTrigSource 169
AcqrsD1_getTrigTV 171
AcqrsD1_getVersion (DEPRECATED) 173
AcqrsD1_getVertical 174
AcqrsD1_init (DEPRECATED) 176
AcqrsD1_InitWithOptions (DEPRECATED) 177
AcqrsD1_logicDeviceIO (DEPRECATED) 179
AcqrsD1_multiInstrAutoDefine 181
AcqrsD1_multiInstrDefine 183
AcqrsD1_multiInstrUndefineAll 185
AcqrsD1_procDone 186
AcqrsD1_processData 187
AcqrsD1_readData 189
AcqrsD1_readFCounter 200
AcqrsD1_reportNbrAcquiredSegments 202
AcqrsD1_reset (DEPRECATED) 204
AcqrsD1_resetDigitizerMemory 205
AcqrsD1_restoreInternalRegisters 206
AcqrsD1_setAttributeString (DEPRECATED) 208
AcqrsD1_setLEDColor (DEPRECATED) 209
AcqrsD1_setSimulationOptions (DEPRECATED) 210
AcqrsD1_stopAcquisition 211
AcqrsD1_stopProcessing 212
AcqrsD1_waitForEndOfAcquisition 213
AcqrsD1_waitForEndOfProcessing 215
 AcqrsT3_acqDone 217
AcqrsT3_acquire 218

8 Programmer’s Reference Manual

1

AcqrsT3_configAcqConditions 219
AcqrsT3_configChannel 220
AcqrsT3_configControlIO 222
AcqrsT3_configMemorySwitch 224
AcqrsT3_configMode 226
AcqrsT3_forceTrig 227
AcqrsT3_getAcqConditions 229
AcqrsT3_getChannel 230
AcqrsT3_getControlIO 232
AcqrsT3_getMemorySwitch 234
AcqrsT3_getMode 236
AcqrsT3_readData 238
AcqrsT3_readDataInt32 242
AcqrsT3_readDataReal64 246
AcqrsT3_stopAcquisition 249
AcqrsT3_waitForEndOfAcquisition 250

Introduction 1

Programmer’s Reference Manual 9

1
Introduction

Message to the User

Congratulations on having purchased an Agilent Technologies Acqiris
data conversion product. Acqiris Digitizers, Averagers, Analyzers, and
Time-to-Digital Converters are high-speed data acquisition modules
designed for capturing high frequency electronic signals. To get the
most out of the products we recommend that you read the
accompanying product User Manual, the Programmer's Guide and this
Programmer’s Reference Manual carefully. We trust that the product
you have purchased as well as the accompanying software will meet
with your expectations and provide you with a high quality solution to
your data conversion applications.

Using this Manual

This guide assumes you are familiar with the operation of a personal
computer (PC) running a Windows 2000/XP/Vista or other supported
operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to
control your Acqiris product. It also assumes you have a basic
understanding of the principles of data acquisition using either, a
waveform digitizer, a digital oscilloscope, or other similar instrument.

The User Manual that you also have received (or have access to) has
important and detailed instructions concerning your Acqiris product.
You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you
first receive your new Acqiris product. Special attention
should be paid to sections on safety, packaging and
product handling. Before installing your product please
ensure that your system configuration matches or
exceeds the requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation
and performance verification. Before attempting to use
your Acqiris product for actual measurements we
strongly recommend that you read all sections of this
chapter.

10 Programmer’s Reference Manual

1 Introduction

Chapter 3 PRODUCT DESCRIPTION, provides a full
description of all the functional elements of your
product.

Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION
APPLICATION, describes either

the operation of AcqirisLive 3.5, an application
that enables basic operation of Acqiris digitizers or
averagers in a Windows 2000/XP/Vista
environment;

the operation of SSR Demo and in the
following chapter APx01 Demo, applications that
enable basic operation of Acqiris analyzers in a
Windows 2000/XP/Vista environment;

the operation of the demonstration program
that enables basic operation of Acqiris Time-to-Digital
Converters in a Windows 2000/XP/Vista environment;

the operation of Analyzer Demo, the
demonstration program for the SC240/AC240/SC210/
AC210 from a PC running a Windows 2000/XP/Vista
operating system.

Chapter 5 RUNNING THE GEOMAPPER APPLICATION,
describes the purpose and operation of the GeoMapper
application which is needed for some AS bus
Multi-instrument systems.

The Programmer’s Guide is divided into 3 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where
in the documentation and how to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING
STARTED, provides a description for programming
applications using a variety of software products and
development environments.

Chapter 3 PROGRAMMING AN ACQIRIS INSTRUMENT,
provides information
on using the device driver functions to operate an
Acqiris instrument.

Introduction 1

Programmer’s Reference Manual 11

This Programmer’s Reference manual is divided into 2 sections.

Chapter 1 “Introduction", describes what can be found where in
the documentation and how to use it.

Chapter 2 “Device Driver Function Reference", contains a full
device driver function reference. This documents the
traditional Application Program Interface (API) as it
can be used in the following environments:

LabWindowsCVI, LabVIEW, MATLAB MEX, Visual
Basic, Visual Basic .NET, Visual C++.

Conventions Used in This Manual

The following conventions are used in this manual:

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text
or a note

mono text is used for sections of code, programming examples
and operating system commands.

Certain features are common to several different modules. For increased
readability we have defined the following families:

DC271-FAMILYDC135/DC140/DC211/DC211A/DC241/DC241A/
 DC271/DC271A/DC271AR/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILYDC440/DC438/DC436/DP310/DP308/DP306

10-bit-FAMILYDC122/DC152/DC222/DC252/DC282

U1071A-FAMILYall U1071A variants, DP1400, U1091AD28

NOTE Denotes a note, which alerts you to important information.

12 Programmer’s Reference Manual

1 Introduction

Warning Regarding Medical Use

The Agilent Acqiris cards are not designed with components and testing
procedures that would ensure a level of reliability suitable for use in
treatment and diagnosis of humans. Applications of these cards
involving medical or clinical treatment can create a potential for
accidental injury caused by product failure, or by errors on the part of
the user. These cards are not intended to be a substitute for any form of
established process or equipment used to monitor or safeguard human
health and safety in medical treatment.

Warranty

Please refer to the appropriate User Manual.

Warranty and Repair Return Procedure, Assistance and Support

Please refer to the appropriate User Manual.

System Requirements

Please refer to the appropriate User Manual.

WARNING The modules discussed in this manual have not been designed
for making direct measurements on the human body. Users
who connect an Agilent module to a human body do so at their
own risk.

Device Driver Function Reference 2

Programmer’s Reference Manual 13

2
Device Driver Function Reference

All function calls require the argument instrumentID in order to identify
the Acqiris Instrument to which the call is directed. The only exceptions
are the initialization/termination functions:

The functions Acqrs_init , Acqrs_InitWithOptions ,
AcqrsD1_multiInstrDefine, and the older AcqrsD1_init
(DEPRECATED) and AcqrsD1_InitWithOptions (DEPRECATED)
actually return instrument identifiers at initialization time, for
subsequent use in the other function calls.

Status values and Error codes

All function calls return a status value of type ViStatus with information
about the success or failure of the call. All Acqiris specific values can be
found in the header file AcqirisErrorCodes.h and are shown in
Table 2-1. The generic ones, defined by the VXIplug&play Systems
Alliance, are listed in the header file vpptype.h (VXIplug&play
instrument driver header file, which includes visatype.h: fundamental
VISA data types and macro definitions). They are reproduced in
Table 2-2 for convenience. The header file AcqirisD1Interface.h
shows the common error codes associated with each function.

Acqrs_calibrate Acqrs_calibrateEx Acqrs_close
Acqrs_closeAll Acqrs_getNbrInstruments Acqrs_init
Acqrs_InitWithOptions Acqrs_setSimulationOptions
AcqrsD1_close (DEPRECATED) AcqrsD1_init

(DEPRECATED)
AcqrsD1_InitWithOptio
ns (DEPRECATED)

AcqrsD1_getNbrPhysicalInstrument
s (DEPRECATED)

AcqrsD1_multiInstrAutoDefi
ne

AcqrsD1_setSimulationOptions
(DEPRECATED)

AcqrsD1_multiInstrUndefine
All

Acqiris Error Codes Hex value Decimal value
ACQIRIS_ERROR_FILE_NOT_FOUND BFFA4800 -1074116608
ACQIRIS_ERROR_PATH_NOT_FOUND BFFA4801 -1074116607
ACQIRIS_ERROR_INVALID_HANDLE BFFA4803 -1074116605
ACQIRIS_ERROR_NOT_SUPPORTED BFFA4805 -1074116603
ACQIRIS_ERROR_INVALID_WINDOWS_PARAM BFFA4806 -1074116602
ACQIRIS_ERROR_NO_DATA BFFA4807 -1074116601
ACQIRIS_ERROR_NO_ACCESS BFFA4808 -1074116600
ACQIRIS_ERROR_BUFFER_OVERFLOW BFFA4809 -1074116599
ACQIRIS_ERROR_BUFFER_NOT_64BITS_ALIGNED BFFA480A -1074116598
ACQIRIS_ERROR_BUFFER_NOT_32BITS_ALIGNED BFFA480B -1074116597
ACQIRIS_ERROR_CAL_FILE_CORRUPTED BFFA480C -1074116596
ACQIRIS_ERROR_CAL_FILE_VERSION BFFA480D -1074116595
ACQIRIS_ERROR_CAL_FILE_SERIAL BFFA480E -1074116594
ACQIRIS_ERROR_ALREADY_OPEN BFFA4840 -1074116544
ACQIRIS_ERROR_SETUP_NOT_AVAILABLE BFFA4880 -1074116480

Table 2-1

14 Programmer’s Reference Manual

2 Device Driver Function Reference

ACQIRIS_ERROR_IO_WRITE BFFA48A0 -1074116448
ACQIRIS_ERROR_IO_READ BFFA48A1 -1074116447
ACQIRIS_ERROR_IO_DEVICE_OFF BFFA48A2 -1074116446
ACQIRIS_ERROR_IO_VME_CONFIG BFFA48A3 -1074116445
ACQIRIS_ERROR_IO_VME_ACCESS BFFA48A4 -1074116444
ACQIRIS_ERROR_INTERNAL_DEVICENO_INVALID BFFA48C0 -1074116416
ACQIRIS_ERROR_TOO_MANY_DEVICES BFFA48C1 -1074116415
ACQIRIS_ERROR_EEPROM_DATA_INVALID BFFA48C2 -1074116414
ACQIRIS_ERROR_INIT_STRING_INVALID BFFA48C3 -1074116413
ACQIRIS_ERROR_INSTRUMENT_NOT_FOUND BFFA48C4 -1074116412
ACQIRIS_ERROR_INSTRUMENT_RUNNING BFFA48C5 -1074116411
ACQIRIS_ERROR_INSTRUMENT_STOPPED BFFA48C6 -1074116410
ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS BFFA48C7 -1074116409
ACQIRIS_ERROR_NOT_ENOUGH_DEVICES BFFA48C8 -1074116408
ACQIRIS_ERROR_NO_MASTER_DEVICE BFFA48C9 -1074116407
ACQIRIS_ERROR_PARAM_STRING_INVALID BFFA48CA -1074116406
ACQIRIS_ERROR_COULD_NOT_CALIBRATE BFFA48CB -1074116405
ACQIRIS_ERROR_CANNOT_READ_THIS_CHANNEL BFFA48CC -1074116404
ACQIRIS_ERROR_PRETRIGGER_STILL_RUNNING BFFA48CD -1074116403
ACQIRIS_ERROR_CALIBRATION_FAILED BFFA48CE -1074116402
ACQIRIS_ERROR_MODULES_NOT_CONTIGUOUS BFFA48CF -1074116401
ACQIRIS_ERROR_INSTRUMENT_ACQ_LOCKED BFFA48D0 -1074116400
ACQIRIS_ERROR_INSTRUMENT_ACQ_NOT_LOCKED BFFA48D1 -1074116399
ACQIRIS_ERROR_EEPROM2_DATA_INVALID BFFA48D2 -1074116398
ACQIRIS_ERROR_INSTRUMENT_IN_USE BFFA48D3 -1074116397
ACQIRIS_ERROR_MEZZIO_IN_USE BFFA48D4 -1074116396
ACQIRIS_ERROR_MEZZIO_ACQ_TIMEOUT BFFA48D5 -1074116395
ACQIRIS_ERROR_DEVICE_ALREADY_OPEN BFFA48D6 -1074116394
ACQIRIS_ERROR_EEPROM_CRC_FAILED BFFA48D7 -1074116393
ACQIRIS_ERROR_INVALID_GEOMAP_FILE BFFA48E0 -1074116384
ACQIRIS_ERROR_ACQ_TIMEOUT BFFA4900 -1074116352
ACQIRIS_ERROR_OVERLOAD BFFA4901 -1074116351
ACQIRIS_ERROR_PROC_TIMEOUT BFFA4902 -1074116350
ACQIRIS_ERROR_LOAD_TIMEOUT BFFA4903 -1074116349
ACQIRIS_ERROR_READ_TIMEOUT BFFA4904 -1074116348
ACQIRIS_ERROR_INTERRUPTED BFFA4905 -1074116347
ACQIRIS_ERROR_WAIT_TIMEOUT BFFA4906 -1074116346
ACQIRIS_ERROR_CLOCK_SOURCE BFFA4907 -1074116345
ACQIRIS_ERROR_OPERATION_CANCELLED BFFA4908 -1074116344
ACQIRIS_ERROR_FIRMWARE_NOT_AUTHORIZED BFFA4A00 -1074116096
ACQIRIS_ERROR_FPGA_1_LOAD BFFA4A01 -1074116095
ACQIRIS_ERROR_FPGA_2_LOAD BFFA4A02 -1074116094
ACQIRIS_ERROR_FPGA_3_LOAD BFFA4A03 -1074116093
ACQIRIS_ERROR_FPGA_4_LOAD BFFA4A04 -1074116092
ACQIRIS_ERROR_FPGA_5_LOAD BFFA4A05 -1074116091
ACQIRIS_ERROR_FPGA_6_LOAD BFFA4A06 -1074116090
ACQIRIS_ERROR_FPGA_7_LOAD BFFA4A07 -1074116089
ACQIRIS_ERROR_FPGA_8_LOAD BFFA4A08 -1074116088
ACQIRIS_ERROR_FIRMWARE_NOT_SUPPORTED BFFA4A09 -1074116087
ACQIRIS_ERROR_FPGA_1_FLASHLOAD_NO_INIT BFFA4A10 -1074116080
ACQIRIS_ERROR_FPGA_1_FLASHLOAD_NO_DONE BFFA4A11 -1074116079

Table 2-1

Device Driver Function Reference 2

Programmer’s Reference Manual 15

ACQIRIS_ERROR_FPGA_2_FLASHLOAD_NO_INIT BFFA4A12 -1074116078
ACQIRIS_ERROR_FPGA_2_FLASHLOAD_NO_DONE BFFA4A13 -1074116077
ACQIRIS_ERROR_SELFCHECK_MEMORY BFFA4A20 -1074116064
ACQIRIS_ERROR_SELFCHECK_DAC BFFA4A21 -1074116063
ACQIRIS_ERROR_SELFCHECK_RAMP BFFA4A22 -1074116062
ACQIRIS_ERROR_SELFCHECK_PCIE_LINK BFFA4A23 -1074116061
ACQIRIS_ERROR_SELFCHECK_PCIE_DEVICE BFFA4A24 -1074116060
ACQIRIS_ERROR_FLASH_ACCESS_TIMEOUT BFFA4A30 -1074116048
ACQIRIS_ERROR_FLASH_FAILURE BFFA4A31 -1074116047
ACQIRIS_ERROR_FLASH_READ BFFA4A32 -1074116046
ACQIRIS_ERROR_FLASH_WRITE BFFA4A33 -1074116045
ACQIRIS_ERROR_FLASH_EMPTY BFFA4A34 -1074116044
ACQIRIS_ERROR_ATTR_NOT_FOUND BFFA4B00 -1074115840
ACQIRIS_ERROR_ATTR_WRONG_TYPE BFFA4B01 -1074115839
ACQIRIS_ERROR_ATTR_IS_READ_ONLY BFFA4B02 -1074115838
ACQIRIS_ERROR_ATTR_IS_WRITE_ONLY BFFA4B03 -1074115837
ACQIRIS_ERROR_ATTR_ALREADY_DEFINED BFFA4B04 -1074115836
ACQIRIS_ERROR_ATTR_IS_LOCKED BFFA4B05 -1074115835
ACQIRIS_ERROR_ATTR_INVALID_VALUE BFFA4B06 -1074115834
ACQIRIS_ERROR_ATTR_CALLBACK_STATUS BFFA4B07 -1074115833
ACQIRIS_ERROR_ATTR_CALLBACK_EXCEPTION BFFA4B08 -1074115832
ACQIRIS_ERROR_KERNEL_VERSION BFFA4C00 -1074115584
ACQIRIS_ERROR_UNKNOWN_ERROR BFFA4C01 -1074115583
ACQIRIS_ERROR_OTHER_WINDOWS_ERROR BFFA4C02 -1074115582
ACQIRIS_ERROR_VISA_DLL_NOT_FOUND BFFA4C03 -1074115581
ACQIRIS_ERROR_OUT_OF_MEMORY BFFA4C04 -1074115580
ACQIRIS_ERROR_UNSUPPORTED_DEVICE BFFA4C05 -1074115579
ACQIRIS_ERROR_PARAMETER9 BFFA4D09 -1074115319
ACQIRIS_ERROR_PARAMETER10 BFFA4D0A -1074115318
ACQIRIS_ERROR_PARAMETER11 BFFA4D0B -1074115317
ACQIRIS_ERROR_PARAMETER12 BFFA4D0C -1074115316
ACQIRIS_ERROR_PARAMETER13 BFFA4D0D -1074115315
ACQIRIS_ERROR_PARAMETER14 BFFA4D0E -1074115314
ACQIRIS_ERROR_PARAMETER15 BFFA4D0F -1074115313
ACQIRIS_ERROR_NBR_SEG BFFA4D10 -1074115312
ACQIRIS_ERROR_NBR_SAMPLE BFFA4D11 -1074115311
ACQIRIS_ERROR_DATA_ARRAY BFFA4D12 -1074115310
ACQIRIS_ERROR_SEG_DESC_ARRAY BFFA4D13 -1074115309
ACQIRIS_ERROR_FIRST_SEG BFFA4D14 -1074115308
ACQIRIS_ERROR_SEG_OFF BFFA4D15 -1074115307
ACQIRIS_ERROR_FIRST_SAMPLE BFFA4D16 -1074115306
ACQIRIS_ERROR_DATATYPE BFFA4D17 -1074115305
ACQIRIS_ERROR_READMODE BFFA4D18 -1074115304
ACQIRIS_ERROR_VM_FILE_EXTENSION BFFA4D50 -1074115248
ACQIRIS_ERROR_VM_FILE_VERSION BFFA4D51 -1074115247
ACQIRIS_ERROR_VM_FILE_READ BFFA4D52 -1074115246
ACQIRIS_ERROR_VM_FILE_INVALID BFFA4D53 -1074115245
ACQIRIS_ERROR_VM_VERIFICATION BFFA4D54 -1074115244
ACQIRIS_ERROR_VM_CRC BFFA4D55 -1074115243
ACQIRIS_ERROR_HW_FAILURE BFFA4D80 -1074115200
ACQIRIS_ERROR_HW_FAILURE_CH1 BFFA4D81 -1074115199

Table 2-1

16 Programmer’s Reference Manual

2 Device Driver Function Reference

If important parameters supplied by the user (e.g. an instrumentID) are
found to be invalid, most functions do not execute and return an error
code of the type VI_ERROR_PARAMETER i, where i = 1, 2,...
corresponds to the argument number.

If the user attempts (with a function AcqrsD1_configXXXX) to set a
digitizer parameter to a value outside of its acceptable range, the
function typically adapts the parameter to the closest allowed value and
returns ACQIRIS_WARN_SETUP_ADAPTED . The digitizer
parameters that are actually in use can be retrieved with the query
functions AcqrsD1_getXXXX.

ACQIRIS_ERROR_HW_FAILURE_CH2 BFFA4D82 -1074115198
ACQIRIS_ERROR_HW_FAILURE_CH3 BFFA4D83 -1074115197
ACQIRIS_ERROR_HW_FAILURE_CH4 BFFA4D84 -1074115196
ACQIRIS_ERROR_HW_FAILURE_CH5 BFFA4D85 -1074115195
ACQIRIS_ERROR_HW_FAILURE_CH6 BFFA4D86 -1074115194
ACQIRIS_ERROR_HW_FAILURE_CH7 BFFA4D87 -1074115193
ACQIRIS_ERROR_HW_FAILURE_CH8 BFFA4D88 -1074115192
ACQIRIS_ERROR_HW_FAILURE_EXT1 BFFA4DA0 -1074115168
ACQIRIS_ERROR_MAC_T0_ADJUSTMENT BFFA4DC0 -1074115136
ACQIRIS_ERROR_MAC_ADC_ADJUSTMENT BFFA4DC1 -1074115135
ACQIRIS_ERROR_MAC_RESYNC_ADJUSTMENT BFFA4DC2 -1074115134
ACQIRIS_WARN_SETUP_ADAPTED 3FFA4E00 1073368576
ACQIRIS_WARN_READPARA_NBRSEG_ADAPTED 3FFA4E10 1073368592
ACQIRIS_WARN_READPARA_NBRSAMP_ADAPTED 3FFA4E11 1073368593
ACQIRIS_WARN_EEPROM_AND_DLL_MISMATCH 3FFA4E12 1073368594
ACQIRIS_WARN_ACTUAL_DATASIZE_ADAPTED 3FFA4E13 1073368595
ACQIRIS_WARN_UNEXPECTED_TRIGGER 3FFA4E14 1073368596
ACQIRIS_WARN_READPARA_FLAGS_ADAPTED 3FFA4E15 1073368597
ACQIRIS_WARN_SIMOPTION_STRING_UNKNOWN 3FFA4E16 1073368598
ACQIRIS_WARN_INSTRUMENT_IN_USE 3FFA4E17 1073368597
ACQIRIS_WARN_HARDWARE_TIMEOUT 3FFA4E60 1073368672
ACQIRIS_WARN_RESET_IGNORED 3FFA4E61 1073368671
ACQIRIS_WARN_SELFCHECK_MEMORY 3FFA4F00 1073368832
ACQIRIS_WARN_CLOCK_SOURCE 3FFA4F01 1073368833
ACQIRIS_WARN_NUMERIC_OVERFLOW 3FFA4F20 1073368864

Table 2-1

Error code Hex value Decimal value
VI_SUCCESS 0 0
VI_ERROR_PARAMETER1 BFFC0001 -1074003967
VI_ERROR_PARAMETER2 BFFC0002 -1074003966
VI_ERROR_PARAMETER3 BFFC0003 -1074003965
VI_ERROR_PARAMETER4 BFFC0004 -1074003964
VI_ERROR_PARAMETER5 BFFC0005 -1074003963
VI_ERROR_PARAMETER6 BFFC0006 -1074003962
VI_ERROR_PARAMETER7 BFFC0007 -1074003961
VI_ERROR_PARAMETER8 BFFC0008 -1074003960
VI_ERROR_FAIL_ID_QUERY BFFC0011 -1074003951
VI_ERROR_INV_RESPONSE BFFC0012 -1074003950

Table 2-2

Device Driver Function Reference 2

Programmer’s Reference Manual 17

Data are always returned through pointers to user-allocated variables or
arrays.

Some parameters are labeled "Currently ignored". It is recommended to
supply the value "0" (ViInt32) or "0.0" (ViReal64) in order to be
compatible with future products that may offer additional functionality.

API Function classification

The API has been split into three families:
• Acqrs Generic functions - AqBx - these can be used for all Acqiris

Instruments

• AcqrsD1 Digitizer functions - AqDx - to be used for Digitizers and
Analyzers

• AcqrsT3 Time-to-Digital Converter functions - AqTx - to be used for
the family of Time-to-Digital Converters

All of these functions are still contained in one library called AqDrv4 .
However, there are separate files for the headers and the LabWindows
front-panel interface. The LabView interface is also split into the three
corresponding AqXX parts. The AcqrsD1 section includes redundant
copies of the generic functions so that backward calling compatibility
can be maintained for existing code.

Visual Basic support will be limited to the Generic and AcqrsD1
families. Time-to-Digital Converters are supported in Visual Basic
.NET but not in Visual Basic.

18 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqirisInterface.h functions

Generic Initialization Functions Function Name
Number of Physical Instruments Acqrs_getNbrInstruments
Initialization Acqrs_init
Initialization with Options Acqrs_InitWithOptions
Simulation Options Acqrs_setSimulationOptions

Generic Calibration Functions
Calibrate Instrument Acqrs_calibrate
Calibrate Instrument Extended Acqrs_calibrateEx
Interrupt Calibration Acqrs_calibrateCancel
Load calibration values from a file Acqrs_calLoad
Query about the necessity of self calibration Acqrs_calRequired
Save all calibration values in a file Acqrs_calSave

Generic Query Functions
Instrument Basic Data Acqrs_getInstrumentData
Instrument Information Acqrs_getInstrumentInfo
Number of Channels Acqrs_getNbrChannels

Generic Utility Functions
Version Acqrs_getVersion
Error Message Acqrs_errorMessage
Reset Acqrs_reset
Set LED Color Acqrs_setLEDColor
Close an instrument Acqrs_close
Close all instruments Acqrs_closeAll
Resume the control of an instrument that was suspended Acqrs_resumeControl
Suspend control of an instrument Acqrs_suspendControl
Prepare for entry or return from the system power down state Acqrs_powerSystem

Device Driver Function Reference 2

Programmer’s Reference Manual 19

AcqirisD1Interface.h functions

Digitizer Initialization Functions Function Name
Number of Physical Instruments (deprec.) AcqrsD1_getNbrPhysicalInstruments
MultiInstrument Auto Define AcqrsD1_multiInstrAutoDefine
Initialization (deprec.) AcqrsD1_init
Initialization with Options (deprec.) AcqrsD1_InitWithOptions
Simulation Options (deprec.) AcqrsD1_setSimulationOptions

Digitizer Calibration Functions
Calibrate Instrument (deprec.) AcqrsD1_calibrate
Calibrate Instrument Extended (deprec.) AcqrsD1_calibrateEx

Digitizer Configuration Functions
Configure Vertical Settings AcqrsD1_configVertical
Configure Horizontal Settings AcqrsD1_configHorizontal
Configure Channel Combination AcqrsD1_configChannelCombinatio

n
Configure Trigger Class AcqrsD1_configTrigClass
Configure Trigger Source AcqrsD1_configTrigSource
Configure Trigger TV AcqrsD1_configTrigTV
Configure Memory Settings AcqrsD1_configMemory
Configure Memory Settings (extended) AcqrsD1_configMemoryEx
Configure External Clock AcqrsD1_configExtClock
Configure Digitizer Mode AcqrsD1_configMode
Configure Multiplexer Input AcqrsD1_configMultiInput
Configure Control IO AcqrsD1_configControlIO
Configure Frequency Counter AcqrsD1_configFCounter
Configure Averager Configuration Attribute AcqrsD1_configAvgConfig

AcqrsD1_configAvgConfigInt32
AcqrsD1_configAvgConfigReal64

Configure (program) on-board FPGA (deprec.) AcqrsD1_configLogicDevice
Configure Array of Setup Parameters AcqrsD1_configSetupArray
Logical Device IO AcqrsD1_logicDeviceIO
MultiInstrument Manual Define AcqrsD1_multiInstrDefine
MultiInstrument Undefine AcqrsD1_multiInstrUndefineAll
Setup Streaming in SC Analyzer AcqrsD1_setAttributeString

Digitizer Acquisition Control Functions
Start Acquisition AcqrsD1_acquire
Start Acquisition (Extended) AcqrsD1_acquireEx
Query Acquisition Status AcqrsD1_acqDone
Software Trigger AcqrsD1_forceTrig
Software Trigger (Extended) AcqrsD1_forceTrigEx
Stop Acquisition AcqrsD1_stopAcquisition
Wait for End of Acquisition AcqrsD1_waitForEndOfAcquisition
Number of Acquired Segments AcqrsD1_reportNbrAcquiredSegmen

ts
Digitizer Data Transfer Functions

Universal Waveform Read AcqrsD1_readData
Accumulate Data AcqrsD1_accumulateData

20 Programmer’s Reference Manual

2 Device Driver Function Reference

Averaged Data AcqrsD1_averagedData
Read Frequency Counter AcqrsD1_readFCounter

Digitizer Query Functions Function Name
Query External Clock AcqrsD1_getExtClock
Query Horizontal Settings AcqrsD1_getHorizontal
Query Channel Combination AcqrsD1_getChannelCombination
Query Memory Settings AcqrsD1_getMemory
Query Memory Settings (extended) AcqrsD1_getMemoryEx
Query Multiplexer Input AcqrsD1_getMultiInput
Query Trigger Class AcqrsD1_getTrigClass
Query Trigger Source AcqrsD1_getTrigSource
Query Trigger TV AcqrsD1_getTrigTV
Query Vertical Settings AcqrsD1_getVertical
Query Digitizer Mode AcqrsD1_getMode
Query Control IO AcqrsD1_getControlIO
Query Frequency Counter AcqrsD1_getFCounter
Query Averager Configuration AcqrsD1_getAvgConfig

AcqrsD1_getAvgConfigInt32
AcqrsD1_getAvgConfigReal64

Instrument Basic Data (deprec.) AcqrsD1_getInstrumentData
Instrument Information (deprec.) AcqrsD1_getInstrumentInfo
Number of Channels AcqrsD1_getNbrChannels
Query Array of Setup Parameters AcqrsD1_getSetupArray

Digitizer Control Functions
Query (on-board) Processing Status AcqrsD1_procDone
Start (on-board) Processing AcqrsD1_processData
Stop (on-board) Processing AcqrsD1_stopProcessing
Wait for End of (on-board) Processing AcqrsD1_waitForEndOfProcessing

Digitizer Utility Functions
Best Nominal Samples AcqrsD1_bestNominalSamples
Best Sampling Interval AcqrsD1_bestSampInterval
Version AcqrsD1_getVersion
Error Message AcqrsD1_errorMessage
Extended Error Message AcqrsD1_errorMessageEx
Reset (deprec.) AcqrsD1_reset
Reset Digitizer Memory AcqrsD1_resetDigitizerMemory
Restore Internal Registers AcqrsD1_restoreInternalRegisters
Set LED Color AcqrsD1_setLEDColor
Close all instruments (deprec.) AcqrsD1_closeAll

Device Driver Function Reference 2

Programmer’s Reference Manual 21

AcqirisT3Interface.h functions

Time-to-Digital Converter Configuration Functions Function Name
Configure Acquisition Conditions AcqrsT3_configAcqConditions
Configure Channel AcqrsT3_configChannel

Time-to-Digital Converter Acquisition Control Funct ions
Start Acquisition AcqrsT3_acquire
Query Acquisition Status AcqrsT3_acqDone
Force trigger AcqrsT3_forceTrig
Stop Acquisition AcqrsT3_stopAcquisition
Wait for End of Acquisition AcqrsT3_waitForEndOfAcquisition

Time-to-Digital Converter Data Transfer Functions
Universal Time Data Read AcqrsT3_readData

AcqrsT3_readDataInt32
AcqrsT3_readDataReal64

Time-to-Digital Converter Query Functions
Query Acquisition Conditions AcqrsT3_getAcqConditions
Query Channel AcqrsT3_getChannel

22 Programmer’s Reference Manual

2 Device Driver Function Reference

API Function descriptions

This section describes each function in the Device Driver. The functions appear
in alphabetical order.

Acqrs_calibrate

Purpose

Performs an auto-calibration of the instrument.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calibrate(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibrate Instrument.vi

Visual Basic .NET Representation

Acqrs_calibrate (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrate(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 23

Acqrs_calibrateCancel

Purpose

Interrupts a calibration of the instrument launched from a different thread.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calibrateCancel(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibrate Cancel.vi

Visual Basic .NET Representation

Acqrs_calibrateCancel (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateCancel(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

24 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_calibrateEx

Purpose

Performs a (partial) auto-calibration of the instrument.

Parameters

Input

Return Value

Discussion

Calling this function with calType = 0 is equivalent to calling Acqrs_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many
possible channel combinations, e.g. the DC271. However, the user must keep track of
which channel combinations were calibrated, and request another such partial
calibration when changing the channel configuration with the function
AcqrsD1_configChannelCombination. This task can be facilitated by using
Acqrs_calRequired.

Calibrating with calType = 2 can only be done if the external input frequency is
appropriately high. See the discussion in the Programmer's Guide section 3.16.2,
External Clock (Continuous). If the calibration cannot be done an error code will be
returned. It is not applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the
HRes SR functionality. For best results it, or the longer full calibration, should be
called after a change of sampling rate.

Calibrating with calType = 4 can be used for all but the 12-bit-FAMILY models. A
new calibration should be done if the AcqrsD1_ configChannelCombination
parameters or any of the following AcqrsD1_configVertical parameters are
changed: fullScale, coupling (impedance), bandwidth, channel. This calibration will
be much faster than the calType = 0 case for models with more than one impedance
setting. It will use the new values that have been asked for.

Name Type Description
instrumentID ViSession Instrument identifier
calType ViInt32 = 0 calibrate the entire instrument.

= 1 calibrate only the current channel configuration.
= 2 calibrate external clock timing. Requires
operation
 in External Clock (Continuous).
= 3 calibrate only at the current frequency
 (12-bit-FAMILY, only)
= 4 fast calibration for current settings only

modifier ViInt32 For calType = 0,1, or 2: Currently unused, set to “0”

For calType = 3 or 4, 0 = calibrate for all channels
 n = calibrate for channel "n"

flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 25

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calibrate(ViSession instrumentID,
ViInt32 calType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) CalibrateEx Instrument.vi

Visual Basic .NET Representation

Acqrs_calibrateEx (ByVal instrumentID As Int32, _
 ByVal calType As Int32, _
 ByVal modifier As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentID, calType, modifier, flags)

26 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_calLoad

Purpose

Load calibration values from file. (For all but 12-bit-FAMILY modules).

Parameters

Input

Return Value

Discussion

Load calibration values from a binary file. The path or full filename can be specified,
else default values will be used (‘snXXXXX_calVal.bin’ file in the working
directory).

The function can return the following error codes:

• ACQIRIS_ERROR_FILE_CORRUPTED if the file is corrupted

• ACQIRIS_ERROR_FILE_VERSION if the file has been
generated with a driver version different than the used one (major
and minor).

• ACQIRIS_ERROR_FILE_SERIAL if the file does not correspond
to the instrument or an AS bus multi-instrument has changed.

Name Type Description
instrumentID ViSession Instrument identifier
filePathName ViConstString File path and file name
flags ViInt32 Flags, may be:

0 = default filename. Calibration values will be
loaded from the ‘snXXXXX_calVal.bin’ file in the
working directory. ‘filePathName’ MUST be NULL
or “” (empty String).

1 = specify path only. Calibration values will be
loaded from the ‘snXXXXX_calVal.bin’ file in the
specified directory. ‘filePathName’ MUST be
non-NULL.

2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be
non-NULL and non-empty.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 27

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calLoad(ViSession instrumentID,
ViConstString filePathName, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibration Load Instrument.vi

Visual Basic .NET Representation

Acqrs_calLoad (ByVal instrumentID As Int32, _
ByVal filePathName As String, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calLoad(instrumentID, filePathName, flags)

28 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_calRequired

Purpose

Check if a self calibration is needed. (For 10-bit-FAMILY/U1071A-FAMILY).

Parameters

Input

Output

Return Value

Discussion

Query about the necessity of self calibration.

The value channel = 0 can be used to do the query on all channels simultaneously.

A calibration is needed for channel, channel > 0, if one or more of the 3 following
condition is true:

• The channel channel of the instrument has never been calibrated for
the desired acquisition conditions.

• It has been calibrated more than 2 hours ago.

• The instrument temperature since the last calibration has changed by
more than 5°C.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 Channel number [0,1… Nchan]

Name Type Description
isRequiredP ViBoolean = VI_TRUE if a calibration on channel chan is

needed
 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 29

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calRequired(ViSession instrumentID, ViInt32 channel,
ViBoolean* isRequiredP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Calibration Required.vi

Visual Basic .NET Representation

Acqrs_calRequired (ByVal instrumentID As Int32, ByVal channel As Int32,_
ByRef isRequired As Boolean) As Int32

MATLAB MEX Representation

[status isRequired] = Aq_calRequired(instrumentID, channel)

30 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_calSave

Purpose

Save all calibration values in a binary file. (For all but 12-bit-FAMILY modules).

Parameters

Input

Return Value

Discussion

Write calibration values in a binary file. The path or full filename can be specified,
else default values will be used (‘snXXXXX_calVal.bin’ file in the working
directory).

NOTE: If the file already exists, it will be overwritten.

Name Type Description
instrumentID ViSession Instrument identifier
filePathName ViConstString File path and file name
flags ViInt32 Flags, may be:

0 = default filename. Calibration values will be
loaded from the ‘snXXXXX_calVal.bin’ file in the
working directory. ‘filePathName’ MUST be NULL
or “” (empty String).

1 = specify path only. Calibration values will be
loaded from the ‘snXXXXX_calVal.bin’ file in the
specified directory. ‘filePathName’ MUST be
non-NULL.

2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be
non-NULL and non-empty.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 31

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calSave(ViSession instrumentID,
ViConstString filePathName, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibration Save.vi

Visual Basic .NET Representation

Acqrs_calSave (ByVal instrumentID As Int32,
_ByVal filePathName As String,
_ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calSave(instrumentID, filePathName, flags)

32 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_close

Purpose

Closes an instrument.

Parameters

Input

Return Value

Discussion

Close the specified instrument. Once closed, this instrument is not available anymore
and needs to be reenabled using Acqrs_InitWithOptions or Acqrs_init.
10-bit-FAMILY digitizers will have their power consumption lowered. Appropriate
warm-up time may be needed when they are used again.

For freeing properly all resources, Acqrs_closeAll must still be called when the
application closes, even if Acqrs_close was called for each instrument.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_close(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Close.vi

Visual Basic .NET Representation

Acqrs_close (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_close(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 33

Acqrs_closeAll

Purpose

Closes all instruments in preparation for closing the application.

Return Value

Discussion

This function should be the last call to the driver, before closing an application. Make
sure to stop all instruments beforehand. 10-bit-FAMILY digitizers will have their
power consumption lowered. Appropriate warm-up time may be needed when they
are used again.

If this function is not called, closing the application might crash the computer in some
situations, particularly in multi-threaded applications.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_closeAll(void);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Close All Instruments.vi

Visual Basic .NET Representation

Acqrs_closeAll () As Int32

MATLAB MEX Representation

[status]= Aq_closeAll()

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

34 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_configLogicDevice

Purpose

Configures (programs) on-board logic devices, such as user-programmable FPGA’s.

NOTE: With the exception of AC and SC Analyzers, this function now needs to be
used only by VxWorks users to specify the filePath for FPGA .bit files. Otherwise it
should no longer have to be used

Parameters

Input

Return Value

Discussion

With flags = 2 in VxWorks systems, the filePathName must point to a directory
containing the FPGA configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with
extension ‘.bit’, e.g. “D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.

For more details on programming on-board logic devices, please refer to the
Programmer’s Guide sections 3.2, Device Initialization and 3.3, Device
Configuration .

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it
can be "ASBUS::n::Block1Dev1" with n ranging
from 0 to the number of modules -1.
When clearing the FPGA’s, the string must be
"Block1DevAll".

filePathName ViChar [] File path and file name
flags ViInt32 flags, may be:

0 = program logic device with data in the file
 “filePathName”
1 = clear the logic device

2 = set path where FPGA .bit files can be found

3 = 0 + use normal search order with AqDrv4.ini
file

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 35

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_configLogicDevice(ViSession instrumentID,
ViChar deviceName[], ViChar filePathName[], ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Configure Logic Device.vi

Visual Basic .NET Representation

Acqrs_configLogicDevice (ByVal instrumentID As Int32, _
ByVal deviceName As String, _
ByVal filePathName As String, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configLogicDevice(instrumentID, deviceName, filePathName, flags)

36 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_errorMessage

Purpose

Translates an error code into a human readable form.

Parameters

Input

Output

Return Value

Discussion

This function should be called immediately after the return of the error status to
ensure that the additional information remains available. For file errors, the returned
message will contain the file name and the original 'ansi' error string. This is
particularly useful for calls to the following functions:

Name Type Description
instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize ViInt32 Size of the errorMessage character buffer in bytes

(suggested size 512)

Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)

into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Acqrs_calibrate Acqrs_calibrateEx
Acqrs_configLogicDevice Acqrs_configMode
Acqrs_init Acqrs_InitWithOptions

Device Driver Function Reference 2

Programmer’s Reference Manual 37

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_errorMessage(ViSession instrumentID,
ViStatus errorCode, ViChar errorMessage[],ViInt32 errorMessageSize);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Error Message.vi

Visual Basic .NET Representation

Acqrs_errorMessage (ByVal instrumentID As Int32, _
ByVal errorCode As Int32, _
ByVal errorMessage As String, _
ByVal errorMessageSize As Int32) As Int32

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentID, errorCode)

38 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_getDevType

Purpose

Returns the deviceType which indicates which family of the API functions can be
used.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getDevType(ViSession instrumentID,
ViInt32* devTypeP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type.vi

Visual Basic .NET Representation

Acqrs_getDevType (ByVal instrumentID As Int32, _
ByRef devType As Long) As Int32

MATLAB MEX Representation

[status devType]= Aq_getDevType(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
devTypeP ViInt32* Pointer to a device type (see AqDevType) with

1 = Digitizer (AcqrsD1)

2 = RC2xx Generator (AcqrsG2)

4 = TC Time-to-Digital Converter (AcqrsT3)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 39

Acqrs_getDevTypeByIndex

Purpose

Returns the deviceType which indicates which family of API functions can be used.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getDevTypeByIndex(ViInt32 devIndex, ViInt32* devTypeP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type By Index.vi

Visual Basic .NET Representation

Acqrs_ getDevTypeByIndex (ByVal devIndex As Int32, _
ByRef devType As Long) As Int32

MATLAB MEX Representation

[status devType]= Aq_getDevType(devIndex)

Name Type Description
devIndex ViInt32 Device Index (the integer part of the resource name

as used in Acqrs_initWithOptions . See the
Programmer’s Guide section 3.2.1)

Name Type Description
devTypeP ViInt32* Pointer to a device type (see AqDevType) with

1 = Digitizer (AcqrsD1)

2 = RC2xx Generator (AcqrsG2)

4 = TC Time-to-Digital Converter (AcqrsT3)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

40 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_getInstrumentData

Purpose

Returns some basic data about a specified instrument.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getInstrumentData(ViSession instrumentID,
ViChar name[], ViInt32*serialNbr,
ViInt32* busNbr, ViInt32* slotNbr);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Instrument ID.vi

Visual Basic .NET Representation

Acqrs_getInstrumentData (ByVal instrumentID As Int32, _
ByVal name As String, ByRef serialNbr As Int32, _
ByRef busNbr As Int32, ByRef slotNbr As Int32) As Int32

MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]= Aq_getInstrumentData(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
name ViChar [] Pointer to user-allocated string, into which the

model name is returned (length < 32 characters).
serialNbr ViInt32 Serial number of the module.
busNbr ViInt32 Bus number of the module location.
slotNbr ViInt32 Slot number of the module location. (logical)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 41

Acqrs_getInstrumentInfo

Purpose

Returns general information about a specified instrument.

Parameters

Input

Output

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.

Name Type Description
infoValue ViAddr Requested information value.

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed
below) and supply its address as 'infoValue'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Returned
Type

Description

"ASBus_m_BusNb" ViInt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"ASBus_ m_IsMaster" ViInt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules
–1).

"ASBus_ m_PosInCrate" ViInt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules –1).

"ASBus_ m_SerialNb" ViInt32 Serial number of the m'th module of a multi-instrument.
m runs from 0 to (nbr of modules –1).

"ASBus_ m_SlotNb" ViInt32 Slot number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"CrateNb" ViInt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 Calibrated Delay Offset

(only useful for recovery of battery backed-up
acquisitions)

"DelayScale" ViReal64 Calibrated Delay Scale
(only useful for recovery of battery backed-up
acquisitions)

"ExtCkRatio" ViReal64 Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" ViInt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" ViInt32 Returns 1 if the module has an acquisition started but is

not yet ready to accept a trigger.
"LogDevDataLinks" ViInt32 Number of available data links for a streaming analyzer

42 Programmer’s Reference Manual

2 Device Driver Function Reference

Discussion

For the case "TrigLevelRange chan" the result is to be interpreted as ± (returned
value), which is in % of the vertical Full Scale of the channel, or in mV for an
external trigger source. The value of chan takes is the same as the values of 'channel'
in AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a MultiInstrument and runs
from 0 to (nbr of modules –1) following the channel order. It may be omitted on
single digitizers or for the master of a MultiInstrument

For the case "Options" the available options are returned in a ‘,’ separated string. The
options include the memory size if additional memory has been installed in the form
"MnM" for digitizers where n is the number of megabytes available or "PnMB" for
AP235/AP240 and "AnM" for AP100/AP101/AP200/AP201. Other possible options
include "NoASBus", "BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The
infoValue should point to a string of at least 32 characters.

"LOGDEVHDRBLOCKmDEVn
S string"

ViChar[] Returns information about FPGA firmware loaded. See
comments below.

"MainFirmwareFullVersion" ViUInt32 get the full "firmware version" value of the loaded main
Firmware

"MainFirmwareFunction" ViUInt32 get the "firmware function" value, which identifies the
capabilities of the loaded main Firmware

"MaxSamplesPerChannel" ViInt32 Maximum number of samples per channel available in
digitizer mode

"NbrADCBits" ViInt32 Number of bits of data per sample from this modules
ADCs

"NbrExternalTriggers" ViInt32 Number of external trigger sources
"NbrInternalTriggers" ViInt32 Number of internal trigger sources
"NbrModulesInInstrument" ViInt32 Number of modules in this instrument. Individual

modules (not connected through AS bus) return 1.
"Options" ViChar[] List of options, separated by ‘,’, installed in this

instrument.
"OverloadStatus chan" ViInt32 Returns 1 if chan is in overload, 0 otherwise.

chan takes on the same values as 'channel' in
AcqrsD1_configTrigSource.

"OverloadStatus ALL" ViInt32 Returns 1 if any of the signal or external trigger inputs is
in overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine
which channel is in overload.

"PosInCrate" ViInt32 Physical slot number (position) in cPCI crate
"SSRTimeStamp" ViReal64 Current value of time stamp for Analyzers in SSR mode.
"TbNextSegmentPad" ViInt32 Returns the additional array space (in samples) per

segment needed for the image read of
AcqrsD1_readData. It concerns the data available after
the next call to AcqrsD1_acquire, as opposed to any
current or past acquisition with different conditions.

"TbSegmentPad" ViInt32 Returns the additional array space (in samples) per
segment needed for the image read of
AcqrsD1_readData. It concerns the current data
available, as opposed to any future acquisition with
different conditions.

"Temperature m" ViInt32 Temperature in degrees Centigrade (oC)
"TrigLevelRange chan" ViReal64 Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] String containing the full driver version.

Device Driver Function Reference 2

Programmer’s Reference Manual 43

The case of "LOGDEVHDRBLOCKmDEVnS string" is one in which several
possible values of m, n, and string are allowed. The single digit number m refers to
the FPGA block in the module. For the moment this must always have the value 1.
The single digit number n refers to the FPGA device in the block. It can have values
in the range 1,2,3,4 depending on the module. Among the interesting values of string
are the following case-sensitive strings: "name", "version", "versionTxt",
"compDate", "model".

The case of "SSRTimeStamp" should only be used when data is readable. In other words, it
should only be used between the moment at which the processing is done and the moment
when AcqrsD1_processData is called to enable the subsequent bank switch. .

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getInstrumentInfo(ViSession instrumentID, ViString parameterString,
ViAddr infoValue);

LabVIEW Representation

Acqiris Bx.: (or Aq Bx) Query Instrument Information.vi

NOTE: The type of the returned value depends on the parameter requested. In
LabVIEW, the correct returned type should be supplied as input to the VI, and the
appropriate output wire connected. Any other wire will always return zero.

Visual Basic .NET Representation

Acqrs_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Int32) As Int32

or

Acqrs_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Double) As Int32

or

Acqrs_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByVal infoValue As String) As Int32

MATLAB MEX Representation

[status infoValue] = Aq_getInstrumentInfo(instrumentID, parameterString, dataTypeString)
Allowed values of dataTypeString are ’integer’, ’double’, or ’string’

44 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_getNbrChannels

Purpose

Returns the number of channels on the specified module.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getNbrChannels(ViSession instrumentID, ViInt32* nbrChannels);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Number of Channels.vi

Visual Basic .NET Representation

Acqrs_getNbrChannels (ByVal instrumentID As Int32, _
ByRef nbrChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrChannels ViInt32 Number of channels in the specified module

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 45

Acqrs_getNbrInstruments

Purpose

Returns the number of Acqiris instruments found on the computer.

Parameters

Output

Return Value

Discussion

In the case of multiple processes accessing the Agilent Acqiris instruments, this
function will return the number of currently available instruments. If an instrument
has already been initialized in another process, it will not be available unless it has
been suspended via a call to Acqrs_suspendControl.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getNbrInstruments(ViInt32* nbrInstruments);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Number of Instruments.vi

Visual Basic .NET Representation

Acqrs_getNbrInstruments (ByRef nbrInstruments As Int32) As Int32

MATLAB MEX Representation

[status nbrInstruments]= Aq_getNbrInstruments()

Name Type Description
nbrInstruments ViInt32 Number of Acqiris instruments found on the

computer

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

46 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_getVersion

Purpose

Returns version numbers associated with a specified instrument or current device
driver.

Parameters

Input

Output

Return Value

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent
the major version number, and the lower 2 bytes represent the minor version number.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getVersion(ViSession instrumentID,
ViInt32 versionItem, ViInt32* version);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Revision Query.vi

Visual Basic .NET Representation

Acqrs_getVersion (ByVal instrumentID As Int32, _
ByVal versionItem As Int32, ByRef version As Int32) As Int32

MATLAB MEX Representation

[status version] = Aq_getVersion(instrumentID, versionItem)

Name Type Description
instrumentID ViSession Instrument identifier
versionItem ViInt32 1 for version of Kernel-Mode Driver

2 for version of EEPROM Common Section
3 for version of EEPROM Instrument Section
4 for version of CPLD firmware

Name Type Description
version ViInt32 version number of the requested item

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 47

Acqrs_init

Purpose

Initializes an instrument.

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for
a detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID
when the initialization string could not be interpreted.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_init(ViRsrc resourceName, ViBoolean IDQuery, ViBoolean resetDevice,
ViSession* instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Initialize.vi

Name Type Description
resourceName ViRsrc ASCII string which identifies the module to be

initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the module after

initialization.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

48 Programmer’s Reference Manual

2 Device Driver Function Reference

Visual Basic .NET Representation

Acqrs_init (ByVal resourceName As String, ByVal IDQuery As Boolean,_
ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID] = Aq_init(instrumentID, IDQuery, resetDevice)

Device Driver Function Reference 2

Programmer’s Reference Manual 49

Acqrs_InitWithOptions

Purpose

Initializes an instrument with options.

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID
when the initialization string could not be interpreted.

Multiple options can be given; Separate the option=value pairs with ‘,’ characters.

Name Type Description
resourceName ViRsrc ASCII string which identifies the instrument to be

initialized. See below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the instrument after

initialization.
optionsString ViString ASCII string that specifies options.

Syntax: "optionName=bool" where bool is TRUE
(1) or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)

"DMA": use scatter-gather DMA for data transfers
(default 1).

"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

50 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_InitWithOptions(ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean resetDevice, ViString optionsString, ViSession* instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

Visual Basic .NET Representation

Acqrs_InitWithOptions (ByVal resourceName As String, _
ByVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, _
ByVal optionsString As String, _
ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID]= Aq_initWithOptions(resourceName, IDQuery, resetDevice, optionsString)

Device Driver Function Reference 2

Programmer’s Reference Manual 51

Acqrs_logicDeviceIO

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in
on-board logic devices, such as user-programmable FPGAs. It is useful for AC/SC
Analyzers only.

Parameters

Input

Return Value

Discussion

This function is only useful if the user programmed the on-board logic device
(FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports
internal address auto-incrementation. The following example reads the (32-bit)
contents of register 5 to reg5Value:

ViStatus status =Acqrs_logicDeviceIO(ID, "Block1Dev1", 5, 1, ®5Value, 0, 0);
Note that dataArray must always be supplied as an address, even when writing a
single value.

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to read from or write to.

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it
can be "ASBUS::n::Block1Dev1" with n ranging
from 0 to the number of modules -1

registerID ViInt32 Register Number, can typically assume 0 to 127
nbrValues ViInt32 Number of data values to read
dataArray ViInt32 [] User-supplied array of data values
readWrite ViInt32 Direction 0 = read from device, 1 = write to device
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

52 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_logicDeviceIO(ViSession instrumentID,
ViChar deviceName[], ViInt32 registerID,
ViInt32 nbrValues, ViInt32 dataArray[],
ViInt32 readWrite, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Logic Device IO.vi

Visual Basic .NET Representation

Acqrs_logicDeviceIO (ByVal instrumentID As Int32, _
ByVal deviceName As String, _
ByVal registerID As Int32, _
ByVal nbrValues As Int32, _
ByRef dataArray As Int32, _
ByVal readWrite As Int32, _
ByVal modifier As Int32) As Int32

MATLAB MEX Representation

Because of the separation of input and output arguments in MATLAB two functions
are needed:

[status dataArray] = Aq_logicDeviceRead(instrumentID, deviceName, registerID, nbrValues,

modifier)

[status] = Aq_logicDeviceWrite(instrumentID, deviceName, registerID, nbrValues, dataArray,
modifier)

Device Driver Function Reference 2

Programmer’s Reference Manual 53

Acqrs_powerSystem

Purpose

Forces all instruments to prepare entry into or return from the system power down
state.

Parameters

Input

Return Value

Discussion

Typically, this function is called by a 'Power Aware' application, when it catches a
'system power down' event, such as 'hibernate'.

If 'state == 0', it will suspend all other calling threads. If a thread is performing a long
operation which cannot be completed within milliseconds, such as 'calibrate', it will
be interrupted immediately and will get the status
'ACQIRIS_ERROR_OPERATION_INTERRUPTED'. Note that if an acquisition is
still running while Acqrs_powerSystem(0, 0) is called, it might be incomplete or
corrupted.

If 'state == 1', it will reenable the instruments at the same state as they were before
Acqrs_powerSystem(0, 0). Threads which were suspended will be resumed.
However, interrupted operations which returned an error
'ACQIRIS_ERROR_OPERATION_INTERRUPTED' have to be redone.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_powerSystem(ViInt32 state, ViInt32 flags);

LabVIEW Representation

There is no LabVIEW implementation of this function.

Visual Basic .NET Representation

Acqrs_powerSystem(ByVal state As Int32, ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_powerSystem(state, flags)

Name Type Description
state ViInt32 0 = 'AqPowerOff' of the AqPowerState enum

1 = 'AqPowerOn' of the AqPowerState enum
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

54 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_reset

Purpose

Resets an instrument.

Parameters

Input

Return Value

Discussion

There is no known situation where this action is to be recommended.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_reset(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Reset.vi

Visual Basic .NET Representation

Acqrs_reset (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_reset(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 55

Acqrs_resetMemory

Purpose

Resets the instrument’s memory to a known default state.

Parameters

Input

Return Value

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values 0xaa,
0x55, 0x00 and 0xff. This functionality is mostly intended for use with battery
backed-up memories.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_resetMemory(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Reset Memory.vi

Visual Basic .NET Representation

Acqrs_resetMemory (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_resetMemory(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

56 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_resumeControl

Purpose

Resume the control of an instrument that was suspended (see
Acqrs_suspendControl).

Parameters

Input

Return Value

Discussion

This function reacquires the driver lock of the instrument and allows calls to it from
the current process. The error code
ACQIRIS_ERROR_DEVICE_ALREADY_OPEN is returned when calling an
instrument already locked by another process.

After successfully calling Acqrs_resumeControl, the module will be set to a default
hardware state. It will have no valid data and the timestamp will be set to 0. When the
next acquisition is started, the module will be configured with all of the unmodified
settings from before the Acqrs_suspendControl was invoked.

For modules on a VXI carrier, both modules must be accessed from the same process.
The controlling process can be changed, but only for both modules together, i.e. both
modules must be suspended, and access resumed in the same process.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_resumeControl(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Resume Control.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 57

Visual Basic Representation

ResumeControl (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

Acqrs_ resumeControl (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_resumeControl(instrumentID

58 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_setAttributeString

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_setAttributeString(ViSession instrumentID,
ViInt32 channel, ViConstString name,
ViConstString value);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Set Attribute String.vi

Visual Basic .NET Representation

Acqrs_setAttributeString (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByVal name As String, _
ByVal value As String) As Int32

MATLAB MEX Representation

[status] = Aq_setAttributeString (instrumentID, channel, name, value)

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
name ViConstString ASCII string that specifies options

“odlTxBitRate” is currently the only one used
value ViConstString For “odlTxBitRate” can have values like

“2.5G”,”2.125G”, or “1.0625G”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 59

Acqrs_setLEDColor

Purpose

Sets the front panel LED to the desired color.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_setLEDColor(ViSession instrumentID,
ViInt32 color);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Set LED Color.vi

Visual Basic .NET Representation

Acqrs_setLEDColor (ByVal instrumentID As Int32, _
ByVal color As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_setLEDColor(instrumentID, color)

Name Type Description
instrumentID ViSession Instrument identifier
color ViInt32 0 = OFF (return to normal acquisition status

indicator)

1 = Green

2 = Red

3 = Yellow

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

60 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqrs_setSimulationOptions

Purpose

Sets one or several options which will be used by the function
Acqrs_InitWithOptions , provided that the optionsString supplied with that
function contains the string "simulate=TRUE".

Parameters

Input

Return Value

Discussion

See the Programmer’s Guide section 3.2.10, Simulated Devices, for details on
simulation. A string of the form “M8M” is used to set an 8 Mbyte simulated memory.
The simulation options are reset to none by setting simOptionString to an empty
string "".

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_setSimulationOptions(ViString simOptionString);

LabVIEW Representation

Use Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

Visual Basic .NET Representation

Acqrs_setSimulationOptions (ByVal simOptionString As String) As Int32

MATLAB MEX Representation

[status] = Aq_setSimulationOptions(simOptionsString)

Name Type Description
simOptionString ViString String listing the desired simulation options. See

discussion below.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 61

Acqrs_suspendControl

Purpose

Suspend control of an instrument to allow using it from another process.
NOTE: This is only available for Windows and Linux operating systems.

Parameters

Input

Return Value

Discussion

This function releases the driver lock of the instrument and prevents all further calls
from the current process. The error code ACQIRIS_ERROR_INVALID_HANDLE
is returned when calling functions on a suspended instrument. Use
Acqrs_resumeControl to reacquire the control of the instrument.

Once suspended, this instrument can be used from another process. However, if this
is the first time this other process is used, all desired acquisition settings must be
defined and a calibration will be needed.

For modules on a VXI carrier, both modules must be accessed from the same process.
The controlling process can be changed, but only for both modules together, i.e. both
modules must be suspended, and access resumed in the same process.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_suspendControl(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Suspend Control.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

62 Programmer’s Reference Manual

2 Device Driver Function Reference

Visual Basic Representation

SuspendControl (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

Acqrs_suspendControl (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_suspendControl(instrumentID)

Device Driver Function Reference 2

Programmer’s Reference Manual 63

 AcqrsD1_accumulateData

Purpose

Returns a waveform as an array and accumulates it in a client array.

Parameters

Input

Output

Return Value

Discussion

This function uses the AcqrsD1_readData routine. However, only
'readPar->nbrSegments = 1' and 'readPar->readMode = 0' (ReadModeStdW) are
supported. 'readPar->dataType = 3' (real) and 'readPar->dataType = 2' (long) are NOT
supported.

The sumArray contains the sample-by-sample sums. To get the average values, the
array elements must be divided by the number of accumulations performed. The
sumArray can be interpreted as an unsigned integer. Alternatively, negative values
have to be increased by 2**32.

The number of acquisitions, nbrAcq , can be at most 16777216 for
'readPar->dataType = 0' (char) or 65536 for 'readPar->dataType = 1' (short). This is to
avoid an overflow where the summed values will wrap around 0.

The value in Volts of a data point data in the returned dataArray can be computed
with the formula:

V = dataDesc.vGain * data – dataDesc.vOffset

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired waveform.

Name Type Description
dataArray ViAddr User-allocated waveform destination array of type

char or byte. Its size in dataType units MUST be at
least 'nbrSamples' + 32, for reasons of data
alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its
size MUST be at least 'nbrSamples'. It is a 32-bit
integer (long) array, with the sample-by-sample sum
of the data values in ADC count unit (LSB). See
discussion below.

dataDesc AqDataDescriptor Waveform descriptor structure.
segDescArray ViAddr Segment descriptor structure.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

64 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_accumulateData (ViSession instrumentID,ViInt32 channel,
AqReadParameters* readPar,
void* dataArray, ViInt32 sumArray[], AqDataDescriptor* dataDesc,
void* segDescArray);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Accumulate Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I8 or I16.

Visual Basic Representation

AccumulateData (ByVal instrumentID As Long, _
ByVal channel As Long, _
readPar As AqReadParameters, _
dataArray As Any, _
sumArray As Long, _
dataDesc As AqDataDescriptor, _
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_accumulateData (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByRef readPar As AqReadParameters, _
ByRef dataArray As Byte, _
ByRef sumArray As Int32, _
ByRef dataDesc As AqDataDescriptor, _
ByRef segDescArray As AqSegmentDescriptor) As Int32

MATLAB MEX Representation

[status dataDesc segDescArray dataArray sumArray]=
AqD1_accumulateData(instrumentID, channel, readPar)

Note: The older form Aq_accumulateData is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 65

AcqrsD1_acqDone

Purpose

Checks if the acquisition has terminated.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acqDone(ViSession instrumentID,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Acquisition Status.vi

Visual Basic Representation

AcqDone (ByVal instrumentID As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsD1_acqDone (ByVal instrumentID As Int32, _
ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done]= AqD1_acqDone(instrumentID)
Note: The older form Aq_acqDone is deprecated.

Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
done ViBoolean done = VI_TRUE if the acquisition is terminated

 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

66 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_acquire

Purpose

Starts an acquisition.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acquire(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi

Visual Basic Representation

Acquire (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_acquire (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_acquire(instrumentID)
Note: The older form Aq_acquire is deprecated.

Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 67

AcqrsD1_acquireEx

Purpose

Starts an acquisition.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acquireEx(ViSession instrumentID ,
ViInt32 acquireMode, ViInt32 acquireFlags, ViInt32 acquireParams,
ViInt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi

Visual Basic Representation

AcquireEx (ByVal instrumentID As Long, ByVal acquireMode As Long, _
 ByVal acquireFlags As Long, ByVal acquireParams As Long, _
 ByVal reserved As Long) As Long

Visual Basic .NET Representation

AcqrsD1_acquireEx (ByVal instrumentID As Int32, _
ByVal acquireMode As Int32, ByVal acquireFlags As Int32, _
ByVal acquireParams As Int32, ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_acquireEx(instrumentID, acquireMode, acquireFlags, acquireParams, reserved)
Note: The older form Aq_acquireEx is deprecated. Please convert to the newer
version.

Name Type Description
instrumentID ViSession Instrument identifier
acquireMode ViInt32 = 0, normal

= 2, continue to accumulate (AP Averagers only)
acquireFlags ViInt32 = 0, normal

= 4, resets the time stamp counter (AP240 PeakTDC,
U1071A & 10-bit-Family only)

acquireParams ViInt32 Parameters, currently not used
reserved ViInt32 Currently not used

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

68 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_averagedData

Purpose

This function is intended for single instrument, single channel operation.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters

Input

Output

Return Value

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired waveform
nbrAcq ViInt32 Number of acquisitions to be performed.
calculateMean ViBoolean TRUE to divide the sumArray by nbrAcq to get the

mean values.

FALSE to leave the sample-by-sample sums in the
sumArray.

timeout ViReal64 Acquisition timeout in seconds. The function will
return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of
the acquisition.
The minimum value is 1 ms.

Name Type Description
dataArray ViAddr User-allocated waveform destination array of type

char or byte. Its size in dataType units MUST be at
least 'nbrSamples' + 32, for reasons of data
alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its
size MUST be at least 'nbrSamples'. It is a 32-bit
integer (long) array, with the sample-by-sample sum
of the data values in ADC count unit (LSB). See
discussion below.

dataDesc AqDataDescriptor Waveform descriptor structure. The returned values
will be those of the last acquisition

segDescArray ViAddr Segment descriptor structure. The returned values
will be those of the last acquisition.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 69

Discussion

Because the acquisition control loop is done inside this function, it is suitable only for
single instrument, single channel operation.

This function uses the AcqrsD1_readData routine. However, only
'readPar->nbrSegments = 1' and 'readPar->readMode = 0' (ReadModeStdW) are
supported. 'readPar->dataType = 3' (real) and 'readPar->dataType = 2' (long) are NOT
supported.

The sumArray contains either the average values (calculateMean = TRUE), or the
sample-by-sample sums (calculateMean = FALSE). Note that, in the latter case, the
sumArray can be interpreted as an unsigned integer. Alternatively, negative values
have to be increased by 2**32.

The number of acquisitions, nbrAcq, can be at most 16777216 for
'readPar->dataType = 0' (char) or 65536 for 'readPar->dataType = 1' (short). This is to
avoid an overflow where the summed values will wrap around 0.

The value in Volts of a data point data in the returned waveformArray or
normalized sumArray can be computed with the formula:

V = dataDesc.vGain * data – dataDesc.vOffset

The function will return ACQIRIS_ERROR_ACQ_TIMEOUT if there is no trigger
within the specified timeout interval after the start of each acquisition.

70 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_averagedData(ViSession instrumentID,
ViInt32 channel,AqReadParameters* readPar,
ViInt32 nbrAcq, ViInt8 calculateMean, ViReal64 timeout,
void* dataArray, ViInt32 sumArray[], AqDataDescriptor* dataDesc,
void* segDescArray);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Averaged Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I8 or I16.

Visual Basic Representation

AveragedData (ByVal instrumentID As Long, _
ByVal channel As Long, readPar As AqReadParameters, _
ByVal nbrAcq As Long, ByVal calculateMean As Boolean, _
ByVal timeout As Double, _
dataArray As Any, sumArray As Long, _
dataDesc As AqDataDescriptor, _
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_averagedData (ByVal instrumentID As Int32, _
ByVal channel As Int32, ByRef readPar As AqReadParameters, _
ByVal nbrAcq As Int32, ByVal calculateMean As Boolean, _
ByVal timeout As Double, _
ByRef dataArray As Byte, ByRef sumArray As Int32, _
ByRef dataDesc As AqDataDescriptor, _
ByRef segDescArray As AqSegmentDescriptor) As Int32

MATLAB MEX Representation

[status dataDesc segDescArray dataArray sumArray]= AqD1_averagedData(instrumentID,
channel, readPar, nbrAcq, calculateMean, timeout)

Note: The older form Aq_averagedData is deprecated.
 Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 71

AcqrsD1_bestNominalSamples

Purpose

Helper function to simplify digitizer configuration. It returns the maximum nominal
number of samples that fit into the available memory.

Parameters

Input

Output

Return Value

Discussion

When using this method, make sure to use AcqrsD1_configHorizontal and
AcqrsD1_configMemory beforehand to set the sampling rate and the number of
segments to the desired values (nbrSamples inAcqrsD1_configMemory may be any
number!). AcqrsD1_bestNominalSamples depends on these variables.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nomSamples ViInt32 Maximum number of data samples available

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

72 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_bestNominalSamples(ViSession instrumentID,
ViInt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Best Nominal Samples.vi

Visual Basic Representation

BestNominalSamples (ByVal instrumentID As Long, _
nomSamples As Long) As Long

Visual Basic .NET Representation

AcqrsD1_bestNominalSamples (ByVal instrumentID As Int32, _
ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status nomSamples]= AqD1_bestNominalSamples(instrumentID)
Note: The older form Aq_bestNominalSamples is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 73

AcqrsD1_bestSampInterval

Purpose

Helper function to simplify digitizer configuration. It returns the best possible
sampling rate for an acquisition, which covers the timeWindow with no more than
maxSamples. The calculation takes into account the requested state of the
instrument, in particular the requested number of segments. In addition, this routine
returns the "real" nominal number of samples that can be accommodated (it is
computed as timeWindow/samplingInterval!).

Parameters

Input

Output

Return Value

Discussion

The function returns the value status =
ACQIRIS_ERROR_SETUP_NOT_AVAILABLE when the available memory is too
short, and the longest available sampling interval too short. The returned sampling
interval is the longest one possible. It returns VI_SUCCESS when a good solution
has been found.

NOTE: This function does not modify the state of the digitizer at all. It simply
returns a recommendation that the user is free to override.

NOTE: When using this method, make sure to use AcqrsD1_configMemory
beforehand to set the number of segments to the desired value (nbrSamples may be
any number!). AcqrsD1_bestSampInterval depends on this variable.

NOTE: The returned "recommended" values for the sampling interval sampInterval
and the nominal number of samples nomSamples are expected to be used for
configuring the instrument with calls to AcqrsD1_configMemory and
AcqrsD1_configHorizontal. Make sure to use the same number of segments in this
second call to AcqrsD1_configMemory, as in the first one.

Name Type Description
instrumentID ViSession Instrument identifier
maxSamples ViInt32 Maximum number of samples to be used
timeWindow ViReal64 Time window to be covered, in seconds

Name Type Description
sampInterval ViReal64 Recommended sampling interval in seconds
nomSamples ViInt32 Recommended number of data samples

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

74 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_bestSampInterval(ViSession instrumentID, ViInt32 maxSamples,
ViReal64 timeWindow, ViReal64* sampInterval, ViInt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Best Sampling Interval.vi

Visual Basic Representation

BestSampInterval (ByVal instrumentID As Long, _
ByVal maxSamples As Long, _

 ByVal timeWindow As Double, _
 sampInterval As Double, _
 nomSamples As Long) As Long

Visual Basic .NET Representation

AcqrsD1_bestSampInterval (ByVal instrumentID As Int32, _
ByVal maxSamples As Int32, _
ByVal timeWindow As Double, _
ByRef sampInterval As Double, _
ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status sampInterval nomSamples]= AqD1_bestSampInterval(instrumentID, maxSamples,
timeWindow)

Note: The older form Aq_bestSampInterval is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 75

AcqrsD1_calibrate (DEPRECATED)

Purpose

Performs an auto-calibration of the instrument. See Acqrs_calibrate.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_calibrate(ViSession instrumentID);

LabVIEW Representation

Please refer to .Acqrs_calibrate.

Visual Basic Representation

Calibrate (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_calibrate (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrate(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

76 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_calibrateEx (DEPRECATED)

Purpose

Performs a (partial) auto-calibration of the instrument. See Acqrs_calibrateEx

Parameters

Input

Return Value

Discussion

Calling this function with calType = 0 is equivalent to calling AcqrsD1_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many
possible channel combinations, e.g. the DC271. However, the user must keep track of
which channel combinations were calibrated, and request another such partial
calibration when changing the channel configuration with the function
AcqrsD1_configChannelCombination.This task can be facilitated by using
Acqrs_calRequired.

Calibrating with calType = 2 can only be done if the external input frequency is
appropriately high. See the discussion in the Programmer's Guide section 3.16.2,
External Clock (Continuous). If the calibration cannot be done an error code will be
returned. It is not applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the
HRes SR functionality. For best results it, or the longer full calibration, should be
called after a change of sampling rate.

Calibrating with calType = 4 can be used for all but the 12-bit-FAMILY models. A
new calibration should be done if the AcqrsD1_ configChannelCombination
parameters or any of the following AcqrsD1_configVertical parameters are changed:
fullScale, coupling (impedance), bandwidth, channel. This calibration will be much
faster than the calType = 0 case for models with more than one impedance setting. It
will use the new values that have been asked for.

Name Type Description
instrumentID ViSession Instrument identifier
calType ViInt32 = 0 calibrate the entire instrument

= 1 calibrate only the current channel configuration
= 2 calibrate external clock timing. Requires
operation
 in External Clock (Continuous).
= 3 calibrate only at the current frequency
 (12-bit-FAMILY, only)
= 4 fast calibration for current settings only

modifier ViInt32 For calType = 0,1, or 2: Currently unused, set to “0”

For calType = 3 or 4, 0 = calibrate for all channels

 n = calibrate for channel "n"
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 77

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_calibrateEx(ViSession instrumentID,
ViInt32 calType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

See Acqrs_calibrateEx

Visual Basic Representation

CalibrateEx (ByVal instrumentID As Long, _
ByVal calType As Long, _
ByVal modifier As Long, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_calibrateEx (ByVal instrumentID As Int32, _
ByVal calType As Int32, _
ByVal modifier As Int32, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentID, calType, modifier, flags)

78 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_close (DEPRECATED)

Purpose

Closes an instrument. See Acqrs_close

Parameters

Input

Return Value

Discussion

Close the specified instrument. Once closed, this instrument is not available anymore
and needs to be reenabled using 'InitWithOptions' or 'init'.

For freeing properly all resources, 'closeAll' must still be called when the application
closes, even if 'close' was called for each instrument.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_close(void);

LabVIEW Representation

See Acqrs_close

Visual Basic Representation

Close(ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_close (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_close(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 79

AcqrsD1_closeAll (DEPRECATED)

Purpose

Closes all instruments in preparation for closing the application. See Acqrs_closeAll.

Parameters

Return Value

Discussion

This function should be the last call to the driver, before closing an application. Make
sure to stop all instruments beforehand.

If this function is not called, closing the application might crash the computer in some
situations, particularly in multi-threaded applications.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_closeAll(void);

LabVIEW Representation

See Acqrs_closeAll.

Visual Basic Representation

CloseAll () As Long

Visual Basic .NET Representation

AcqrsD1_closeAll () As Int32

MATLAB MEX Representation

[status]= Aq_closeAll()

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

80 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configAvgConfig

Purpose

Configures a parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.
value ViAddr Value to set. ViAddr resolves to void* in C/C++. The

user must allocate the appropriate variable type (as
listed below), set it to the requested value and supply its
address as 'value'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data
Type

Description

"DitherEnable" ViInt32 For U1084A Averagers ONLY.

0 = No dithering
1 = Dithering enabled

"DitherRange" ViInt32 For Averagers ONLY.

Range of offset dithering, in ADC LSB’s. May assume
values v = 0, 1…15 for AP units and 31 for U1084A
units. The offset is dithered over the range
 [-v, + v] in steps of ~1/8 LSB.

"FixedSamples" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers
and AP240/AP235 PeakTDC ONLY.

Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit
imposed.

"GateType" ViInt32 For AP240/AP235 Analyzers and AP240/AP235
PeakTDC ONLY.

0 = No Gates
1 = User Gates
2 = Threshold Gates

For PeakTDC a gate mode must be chosen.
"HistoTDCEnable" ViInt32 For AP240/AP235 Averagers ONLY.

0 = not enabled
1 = enable the simple TDC mode for the channel

Device Driver Function Reference 2

Programmer’s Reference Manual 81

“InterpEnable” ViInt32 For U1084A PeakTDC ONLY.

0 = No interpolation
1 = Interpolation enabled

"InvertData" ViInt32 0 = (no inversion)
1 = invert data, (1’s complement).

"NbrMaxGates" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers
and AP240/AP235 PeakTDC ONLY.

Maximum number of gates allowed for each segment.
0 = No limit imposed

"NbrSamples" ViInt32 Number of data samples per waveform segment. May
assume quantized values as explained below.

"NbrSegments" ViInt32 Number of waveform segments to acquire. May assume
values between 1 and 8192 in AP units and up to
131072 for U1084A units.

"NbrWaveforms" ViInt32 For Averagers and U1084A (Averager or PeakTDC)
ONLY.

Number of waveforms to average before going to next
segment. May assume values between 1 and 65535 (64K
– 1) in AP units and up to 16777216 for U1084A units.

"NbrRoundRobins" ViInt32 For AP240/AP235 Averagers and AP240/AP235
PeakTDC ONLY.

Number of times to perform the full segment cycle
during data accumulation.

"NoiseBaseEnable" ViInt32 For Averagers andU1084A (Averager or PeakTDC)
ONLY.

0 = no base subtraction
1 = base subtraction enabled.
It can only be enabled if the threshold is enabled, except
for the U1084A PeakTDC , which does not support
threshold.

"NoiseBase" ViReal64 For Averagers and U1084A (Averager or PeakTDC)
ONLY.

Value in Volts of the value to be added in Noise
Supressed Averaging.

"P1Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable

82 Programmer’s Reference Manual

2 Device Driver Function Reference

"P2Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
"PostSamples" ViInt32 For AP240/AP235 SSR and AP240/AP235 PeakTDC

Analyzers in Threshold Gate mode. Used to guarantee
a number of samples after the last one satisfying the
threshold condition.

The meaningful values are 0,4,8,12,16. Other values
will be rounded up or adapted appropriately.

"PreSamples" ViInt32 For AP240/AP235 SSR and AP240/AP235 PeakTDC
Analyzers in Threshold Gate mode. Used to guarantee
a number of samples before the first one satisfying the
threshold condition.

The meaningful values are 0,4,8,12,16. Other values
will be rounded up or adapted appropriately.

"StartDelay" ViInt32 Start delay in samples.

For AP units, may assume values between 0 and
16777200(33554400) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

For U1084A units, may assume values between 0 and
67108864(134217728) in steps of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024).

"StartDeltaNegPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Negative excursion needed before searching for
negative peak.

"StartDeltaPosPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff.

"StartDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Positive excursion needed before searching for positive
peak. Must be positive.

"StartVetoEnable" ViInt32 For AP100/AP200 Averagers ONLY

0 = for trigger enable functionality
1 = use high state of I/O signal to allow the average
accumulation to start.

Must be used in conjunction with
AcqrsD1_configControlIO.

Device Driver Function Reference 2

Programmer’s Reference Manual 83

"StopDelay " ViInt32 Stop delay in samples.

For AP units, may assume values between 0 and
1048560 (2097120) in steps of of 16 (32) as explained
below. The limit is StepSize*(64*1024-1).

For U1084A units, may assume values between 0 and
67108864 (134217728) in steps of of 16 (32) as
explained below. The limit is StepSize*(4*1024*1024)

“SyncOnTrigOutSync” ViInt32 For U1084A units ONLY.

0 = No resynchronisation of the acquisition
1 = Resynchronisation of the acquisition to the
 resynchronized trigger output

"TdcHistogramDepth" ViInt32 The depth of the histogram for AP240/AP235 PeakTDC
mode.

0 = 16-bit accumulation bins.
1 = 32-bit accumulation bins.

"TdcHistogramHorzRes" ViInt32 The horizontal resolution of the histogram for
interpolated peaks in the PeakTDC mode.

0 = each bin corresponds to a sampling interval.
n = each bin corresponds to ½**n of a sampling interval,
 n≤4

"TdcHistogramIncrement
"

ViInt32 The desired increment to be applied for each entry;

1 = increment by 1, for AP240/AP235 SimpleTDC
Averager and for all PeakTDC Analyzer modes
ONLY.
2 = increment by the ADCvalue – NoiseBase
 for an AP240/AP235 SimpleTDC Averager
 and by the ADCvalue for all PeakTDC Analyzer
modes

"TdcHistogramMode" ViInt32 The type of histogram for AP240/AP235 PeakTDC
mode ONLY.

0 = no histogram. Data only is available for each
 acquisition.
1 = histogram.

"TdcHistogramVertRes" ViInt32 The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
PeakTDC mode.

0 = one LSB of the bin value corresponds to one LSB of
the ADC.
n = one LSB of the bin value corresponds to ½**n LSB
of the ADC, n≤4

"TdcMinTOT" ViInt32 For AP240/AP235 SimpleTDC mode ONLY.

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted
if there are at least n consecutive data samples above the
Threshold.

"TdcOverlaySegments" ViInt32 This option controls the horizontal binning of data in the
AP240/AP235 PeakTDC histogram mode.

0 = each segment will be histogrammed independently.
1 = all segments will be histogrammed on a common
 time axis.

84 Programmer’s Reference Manual

2 Device Driver Function Reference

"TdcProcessType" ViInt32 The desired processing for AP240/AP235 PeakTDC
mode peak finding. May assume

0 = No processing
1 = Standard peak finding (no interpolation)
2 = Interpolated peaks
3 = 8 sample peak regions for data readout
4 = 16 sample peak regions for data readout

"ThresholdEnable" ViInt32 For Averagers ONLY.

May assume 0 (no threshold) and 1 (threshold enabled).
"Threshold" ViReal64 Value in Volts of the threshold for Noise Supressed

Averaging or for AP240/AP235 SSR or AP240/AP235
PeakTDC with Threshold Gates.

"TimestampClock" ViInt32 For AP240/AP235 Averagers ONLY. Select the
reference source for the Timestamp clock:
0 = PCI 33MHz clock (default)
1 = Internal 10MHz Reference clock

"TrigAlways" ViInt32 May assume 0 (no trigger output) and 1 (trigger output
on), in the case of no acquisition.

"TriggerTimeout" ViInt32 For AP101/AP201 ONLY.

Trigger timeout in units of 30 ns in the range [0,232 - 1].

A value of 0 means that no trigger will be generated and
no Prepare for Trigger signal will be needed.

"TrigResync" ViInt32 For AP units ONLY.

May assume 0 (no resync), 1 (resync) and 2 (free run).
"ValidDeltaNegPeak" ViInt32 For AP101/AP201 ONLY.

Positive excursion needed to validate a negative peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeak" ViInt32 For AP101/AP201 ONLY.

Negative excursion needed to validate a positive peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeakV" ViReal64 For PeakTDC Analyzers ONLY.

Negative excursion needed to validate a positive peak.
Must be positive.

Device Driver Function Reference 2

Programmer’s Reference Manual 85

Discussion

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 or a U1084A in
dual-channel mode. These parameters are indicated in bold in the list above.

The applicability of each Parameter String as a function of module is indicated as
needed. Averagers or PeakTDC Analyzers refers to all AP and U1084A modules
with that capability.

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin
segment acquisition mode with n triggers for each segment.

The granularity for "NbrSamples", is 16 for the AP100/AP101 and the AP240/AP235
in Dual-Channel mode, 32 for the AP200/AP201 and the AP240/AP235 in
Single-Channel mode, 256 for the U1084A in Dual-Channel mode, and 512 for the
U1084A in Single-Channel mode. The maximum values are limited as a function of
the memory option for the AP units. The U1084A maximum is 262144 samples in
Dual-Channel mode and 524288 samples in Single-Channel mode.

The granularity for "StartDelay" and "StopDelay" is 16 for the AP100/AP101 and the
AP240/AP235 or U1084A in Dual-Channel mode and 32 for the AP200/AP201 and
the AP240/AP235 or U1084A in Single-Channel mode.

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data
will be added if the signal, or the OR of both signals, is in the high state. The same
rule holds if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is
accepted for an average and drops back down when the last trigger's acquition is
complete.

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger
(useful for background acquisition).

Example

long channelNbr = 0, dither = 8;

AcqrsD1_configAvgConfig(ID, channelNbr, "DitherRange", &dither);

86 Programmer’s Reference Manual

2 Device Driver Function Reference

This function sets the dithering range to ± 8 LSB’s.

Note that this function takes the address, not the value of the parameter to be set.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViAddr value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi

This Vi is polymorphic, the value can be either I32 or DBL.

Visual Basic Representation

ConfigAvgConfig (ByVal instrumentID As Long, _
 ByVal channelNbr As Long, _
 ByVal parameterString As String, _
 value As Any) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfig (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value As Int32) As Int32

or

AcqrsD1_configAvgConfig (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value As Double) As Int32

MATLAB MEX Representation

Note: Please see AqD1_configAvgConfigInt32 and AqD1_configAvgConfigReal64.

Device Driver Function Reference 2

Programmer’s Reference Manual 87

AcqrsD1_configAvgConfigInt32

Purpose

Configures a long parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.
value ViInt32 Value to set.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data
Type

Description

"DitherEnable" ViInt32 For U1084A Averagers ONLY.

0 = No dithering
1 = Dithering enabled

"DitherRange" ViInt32 Range of offset dithering, in ADC LSB’s. May assume
values v = 0, 1…15 for AP units and 31 for U1084A
units. The offset is dithered over the range
 [-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.

"FixedSamples" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers
and AP240/AP235 PeakTDC ONLY.

Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit
imposed.

"GateType" ViInt32 For AP240/AP235 Analyzers and AP240/AP235
PeakTDC ONLY.

1 = User Gates
2 = Threshold Gates

"HistoTDCEnable" ViInt32 For AP240/AP235 Averagers ONLY.

0 = not enabled
1 = enable the simple TDC mode for the channel

“InterpEnable” ViInt32 For U1084A PeakTDC ONLY.

0 = No interpolation
1 = Interpolation enabled

"InvertData" ViInt32 0 = (no inversion)
1 = invert data, (1’s complement).

88 Programmer’s Reference Manual

2 Device Driver Function Reference

"NbrMaxGates" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers
and AP240/AP235 PeakTDC ONLY.

Maximum number of gates allowed for each segment.
0 = No limit imposed

"NbrSamples" ViInt32 Number of data samples per waveform segment. May
assume values between 16 or 32 and the available
memory length, in multiples of 16 (32) as explained
below.

"NbrSegments" ViInt32 Number of waveform segments to acquire. May assume
values between 1 and 8192.

"NbrWaveforms" ViInt32 For Averagers and U1084A (Averager or PeakTDC)
ONLY.

Number of waveforms to average before going to next
segment. May assume values between 1 and 65535 (64K
– 1) in AP units and up to 16777216 for U1084A units.

"NbrRoundRobins" ViInt32 For AP240/AP235 Averagers and AP240/AP235
PeakTDC ONLY.

Number of times to perform the full segment cycle
during data accumulation.

"NoiseBaseEnable" ViInt32 For Averagers andU1084A (Averager or PeakTDC)
ONLY.

0 = no base subtraction
1 = base subtraction enabled.
It can only be enabled if the threshold is enabled, except
for the U1084A PeakTDC , which does not support
threshold.

"P1Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
"P2Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable

Device Driver Function Reference 2

Programmer’s Reference Manual 89

"PostSamples" ViInt32 For AP240/AP235 SSR and PeakTDC Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples after the last one satisfying the threshold
condition.

The meaningful values are 0,4,8,12,16. Other values
will be rounded up or adapted appropriately.

"PreSamples" ViInt32 For AP240/AP235 SSR and PeakTDC Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples before the first one satisfying the threshold
condition.

The meaningful values are 0,4,8,12,16. Other values
will be rounded up or adapted appropriately.

"StartDelay" ViInt32 Start delay in samples.

For AP units, may assume values between 0 and
16777200(33554400) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

For U1084A units, may assume values between 0 and
67108864(134217728) in steps of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024).

"StartDeltaNegPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Negative excursion needed before searching for
negative peak.

"StartDeltaPosPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff.

"StartVetoEnable" ViInt32 For AP100/AP200 Averagers ONLY

0 = for trigger enable functionality
1 = use high state of I/O signal to allow the average
accumulation to start.

Must be used in conjunction with
AcqrsD1_configControlIO.

"StopDelay " ViInt32 Stop delay in samples.

For AP units, may assume values between 0 and
1048560 (2097120) in steps of of 16 (32) as explained
below. The limit is StepSize*(64*1024-1).

For U1084A units, may assume values between 0 and
67108864 (134217728) in steps of of 16 (32) as
explained below. The limit is StepSize*(4*1024*1024)

“SyncOnTrigOutSync” ViInt32 For U1084A units ONLY.

0 = No resynchronisation of the acquisition
1 = Resynchronisation of the acquisition to the
 resynchronized trigger output

"TdcHistogramDepth" ViInt32 The depth of the histogram for PeakTDC mode.

0 = 16-bit accumulation bins.
1 = 32-bit accumulation bins.

90 Programmer’s Reference Manual

2 Device Driver Function Reference

"TdcHistogramHorzRes" ViInt32 The horizontal resolution of the histogram for
interpolated peaks in the PeakTDC mode.

0 = each bin corresponds to a sampling interval.
n = each bin corresponds to ½**n of a sampling interval,
 n≤4

"TdcHistogramIncrement
"

ViInt32 The desired increment to be applied for each entry;

1 = increment by 1, for SimpleTDC Averager and
 PeakTDC Analyzer modes ONLY.
2 = increment by the ADCvalue – NoiseBase
 for a SimpleTDC Averager
 and by the ADCvalue for the PeakTDC Analyzer

"TdcHistogramMode" ViInt32 The type of histogram for PeakTDC mode ONLY.

0 = no histogram. Data only is available for each
 acquisition.
1 = histogram.

"TdcHistogramVertRes" ViInt32 The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
PeakTDC mode.

0 = one LSB of the bin value corresponds to one LSB of
the ADC.
n = one LSB of the bin value corresponds to ½**n LSB
of the ADC, n≤4

"TdcMinTOT" ViInt32 For SimpleTDC mode ONLY.

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted
if there are at least n consecutive data samples above the
Threshold.

"TdcOverlaySegments" ViInt32 This option controls the horizontal binning of data in the
PeakTDC histogram mode.

0 = each segment will be histogrammed independently.
1 = all segments will be histogrammed on a common
 time axis.

"TdcProcessType" ViInt32 The desired processing for PeakTDC mode peak
finding. May assume

0 = No processing
1 = Standard peak finding (no interpolation)
2 = Interpolated peaks
3 = 8 sample peak regions for data readout
4 = 16 sample peak regions for data readout

"ThresholdEnable" ViInt32 For Averagers ONLY.

May assume 0 (no threshold) and 1 (threshold enabled).
"TimestampClock" ViInt32 For Averagers ONLY.

Select the reference source for the Timestamp clock:
0 = PCI 33MHz clock (default)
1 = Internal 10MHz Reference clock

"TrigAlways" ViInt32 May assume 0 (no trigger output) and 1 (trigger output
on), in the case of no acquisition.

Device Driver Function Reference 2

Programmer’s Reference Manual 91

Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger
(useful for background acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin
segment acquisition mode with n triggers for each segment.

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 in dual-channel
mode. These parameters are indicated in bold in the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the
AP100/AP101 and the AP240/AP235 in Dual-Channel mode and 32 for the
AP200/AP201 and the AP240/AP235 in Single-Channel mode.

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data
will be added if the signal, or the OR of both signals, is in the high state. The same
rule holds if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is
accepted for an average and drops back down when the last trigger's acquition is
complete.

Example

long channelNbr = 0, dither = 8;

AcqrsD1_configAvgConfigInt32(ID, channelNbr, "DitherRange",
dither);

This function sets the dithering range to ± 8 LSB’s.

Note that this function takes value of the parameter to be set, not the the address.

"TriggerTimeout" ViInt32 For AP101/AP201 ONLY.

Trigger timeout in units of 30 ns in the range [0,232 - 1].

A value of 0 means that no trigger will be generated and
no Prepare for Trigger signal will be needed.

"TrigResync" ViInt32 May assume 0 (no resync), 1 (resync) and 2 (free run)
"ValidDeltaNegPeak" ViInt32 For AP101/AP201 ONLY.

Positive excursion needed to validate a negative peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeak" ViInt32 For AP101/AP201 ONLY.

Negative excursion needed to validate a positive peak.
May assume values between 1 and 0xff.

92 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfigInt32(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViInt32 value);

LabVIEW Representation

Please use the Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi
described in AcqrsD1_configAvgConfig.

Visual Basic Representation

ConfigAvgConfigInt32 (ByVal instrumentID As Long, _
ByVal channelNbr As Long, _
ByVal parameterString As String, _
ByVal value As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfigInt32 (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByVal value As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configAvgConfigInt32(instrumentID, channel, parameterString, value)

Device Driver Function Reference 2

Programmer’s Reference Manual 93

AcqrsD1_configAvgConfigReal64

Purpose

Configures a double parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Discussion

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 in dual-channel
mode. These parameters are indicated in bold in the list above.

Example

long channelNbr = 0;

double thresh = 0.8;

AcqrsD1_configAvgConfigReal64(ID, channelNbr, "DitherRange",
thresh);

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.
value ViReal64 Value to set.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data
Type

Description

"NoiseBase" ViReal64 For Averagers and U1084A (Averager or PeakTDC)
ONLY.

Value in Volts of the value to be added in Noise
Supressed Averaging.

"StartDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Positive excursion needed before searching for positive
peak. Must be positive.

"Threshold" ViReal64 Value in Volts of the threshold for Noise Supressed
Averaging or for SSR or PeakTDC with Threshold
Gates.

"ValidDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Negative excursion needed to validate a positive peak.
Must be positive.

94 Programmer’s Reference Manual

2 Device Driver Function Reference

This function sets the NSA threshold to 0.8 V.

Note that this function takes the value of the parameter to be set, not the address.

Device Driver Function Reference 2

Programmer’s Reference Manual 95

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfigReal64(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViReal64 value);

LabVIEW Representation

Please use the Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi described in
AcqrsD1_configAvgConfig.

Visual Basic Representation

ConfigAvgConfigReal64 (ByVal instrumentID As Long, _
ByVal channelNbr As Long, _
ByVal parameterString As String, _
ByVal value As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfigReal64 (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByVal value As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configAvgConfigReal64(instrumentID, channel, parameterString, value)

96 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configChannelCombination

Purpose

Configures how many converters are to be used for which channels. This routine is
for use with some DC271-FAMILY instruments, the 10-bit-FAMILY, the
U1071A-FAMILY, the AC/SC240, the U1084A, and the AP240/AP235 Signal
Analyzer platforms.

Parameters

Input

Return Value

Discussion

The acceptable values for 'usedChannels' depend on 'nbrConvertersPerChannel' and
on the number of available channels in the digitizer:

 A) If 'nbrConvertersPerChannel' = 1, 'usedChannels' must reflect the fact that ALL
channels are available for use. It accepts a single value for a given digitizer:

 'usedChannels' = 0x00000001 if the digitizer has 1 channel
 = 0x00000003 if the digitizer has 2 channels
 = 0x0000000f if the digitizer has 4 channels

 B) If 'nbrConvertersPerChannel' = 2, 'usedChannels' must reflect the fact that only
half of the channels may be used:

 'usedChannels'= 0x00000001 use channel 1 on a 2-channel digitizer
 = 0x00000002 use channel 2 on a 2-channel digitizer
 = 0x00000003 use channels 1+2 on a 4-channel digitizer
 = 0x00000005 use channels 1+3 on a 4-channel digitizer
 = 0x00000009 use channels 1+4 on a 4-channel digitizer
 = 0x00000006 use channels 2+3 on a 4-channel digitizer
 = 0x0000000a use channels 2+4 on a 4-channel digitizer
 = 0x0000000c use channels 3+4 on a 4-channel digitizer

Name Type Description
instrumentID ViSession Instrument identifier
nbrConvertersPer
Channel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 97

 C) If 'nbrConvertersPerChannel' = 4, 'usedChannels' must reflect the fact that only 1
of the channels may be used:

 'usedChannels'= 0x00000001 use channel 1 on a 4-channel digitizer
 = 0x00000002 use channel 2 on a 4-channel digitizer
 = 0x00000004 use channel 3 on a 4-channel digitizer
 = 0x00000008 use channel 4 on a 4-channel digitizer

NOTE: Digitizers which don't support channel combination, always use the default
'nbrConvertersPerChannel' = 1, and the single possible value of 'usedChannels'

NOTE: Changing the channel combination doesn't change the names of the channels;
they are always the same.

NOTE: If digitizers are combined with AS bus, the channel combination applies
equally to all participating digitizers. The use of the word channel and the names
shown apply to each module of the multi-instrument.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configChannelCombination(
ViSession instrumentID,
ViInt32 nbrConvertersPerChannel,
ViInt32 usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Channel Combination.vi

Visual Basic Representation

ConfigChannelCombination (ByVal instrumentID As Long, _
ByVal nbrConvertersPerChannel As Long, _

 ByVal usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configChannelCombination (ByVal instrumentID As Int32, _
 ByVal nbrConvertersPerChannel As Int32, _
 ByVal usedChannels As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configChannelCombination(instrumentID, nbrConvertersPerChannel,
usedChannels)

Note: The older form Aq_configChannelCombination is deprecated.
Please convert to the newer version.

98 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configControlIO

Purpose

Configures a ControlIO connector. (For
DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/ U1071A-FAMILY /10-bit
FAMILY/AC/SC and U1084A only)

Parameters

Input

Return Value

Name Type Description
instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel I/O A (MMCX or MCX connector)
 2 = Front Panel I/O B (MMCX or MCX
connector)
 3 = Front Panel I/O C (MCX connector, if present)

 9 = Front Panel Trigger Out (MMCX or MCX
connector)

11 = PXI Bus 10 MHz
(DC135/DC140/DC211/
DC211A/DC241/DC241A/DC271/DC271A/
 DC271AR/DC122/DC152/DC222/DC252/
 DC282)

12 = PXI Bus Star Trigger (same models as above)
signal ViInt32 The accepted values depend on the type of

connector
See the table below for details.

qualifier1 ViInt32 The accepted values depend on the type of
connector
See the table below for details.

qualifier2 ViReal64 If trigger veto functionality is available
(AP101/AP201 only), accepts values between 30 ns
and 1.0 sec. The trigger veto values given will be
rounded off to steps of 33 ns. A value of 0.0 means
that no holdoff is required and no Prepare for
Trigger signal will be needed.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 99

Accepted Values of signal vs. Connector Type

Connector Type Possible Values of signal and qualifierX
Front Panel I/O 0 = Disable

 Inputs:
 1 = Enable acquisition (for U1084A Averager).

 6 = (Level) Enable trigger input (for Digitizers)
 If one of the two I/O connectors is set to this value then a
 high level must be present before an edge can be accepted.
 If both I/O connectors are set to this value, they both must
 be high before the trigger edge can be accepted.

 6 = (Level) Enable trigger input or Start Veto (for
AP100/AP200 Averagers) see
AcqrsD1_configAvgConfig for more.

 8 = Prepare for Trigger signal present on this connector.
 qualifier2 gives the desired holdoff in time.

 9 = Gate signal for FC option totalize in gate functionality.

15 = Start Veto (for U1084A Averager).

 Outputs:
19 = (Clock) 10 MHz reference clock (only on I/O A for the
 U1084A Averager)

20 = (Pulse) Acquisition skips to next segment (in sequence
 acquisition mode) input
 (Not for AP240/AP235 Signal Analyzers nor
 U1084A Averager).
21 = (Level) Acquisition is active

22 = (Level) Trigger is armed (ready)(Not available for the
 U1084A Averager)

31 = Analyzer armed (for U1084A Averager).
 The values of qualifier1 and qualifier2 are not used

Front Panel Trigger Out The value of signal is interpreted as a signal offset in mV.
E.g. signal = -500 offsets the output signal by –500 mV. The
accepted range of signal is [-2500,2500], i.e. ± 2.5 V with a
resolution of ~20 mV.

The value of qualifier1 controls if the trigger output is
resynchronized to the clock or maintains a precise timing
relation to the trigger input.

qualifier1= 0 (default): Non-resynchronized
qualifier1= 1 : Resynchronized to sampling clock

PXI Bus 10 MHz 0 = Disable
1 = Enable
Replaces the internal 10 MHz reference clock with the 10 MHz
clock on the PXI rear panel connector.

PXI Bus Star Trigger 0 = Disable
1 = Use PXI Bus Star Trigger as Trigger Input
2 = Use PXI Bus Star Trigger for Trigger Output
Note: When using this connector as Trigger Input, you also
must set the trigger source in sourcePattern in the
function AcqrsD1_configTrigClass to External
Trigger2!

100 Programmer’s Reference Manual

2 Device Driver Function Reference

Discussion

ControlIO connectors are front panel IO connectors for special purpose control
functions of the digitizer. Typical examples are user-controlled acquisition control
(start/stop/skip) or control output signals such as ‘acquisition ready’ or ‘trigger
ready’.

The connector numbers are limited to the allowed values. To find out which
connectors are supported by a given module, use the query function
AcqrsD1_getControlIO.

The variable signal specifies the (programmable) use of the specified connector.

In order to set I/O A as a ‘Enable Trigger’ input and the I/O B as a 10 MHz reference
output, use the function calls

 AcqrsD1_configControlIO(instrID, 1, 6, 0, 0.0);

 AcqrsD1_configControlIO(instrID, 2, 19, 0, 0.0);

In order to obtain a signal offset of +1.5 V on the Trigger Output, use the call

 AcqrsD1_configControlIO(instrID, 9, 1500, 0, 0.0);

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configControlIO(ViSession instrumentID, ViInt32 connector,
ViInt32 signal, ViInt32 qualifier1, ViReal64 qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Control IO Connectors.vi

Device Driver Function Reference 2

Programmer’s Reference Manual 101

Visual Basic Representation

ConfigControlIO (ByVal instrumentID As Long, _
ByVal connector As Long, _
ByVal signal As Long, _
ByVal qualifier1 As Long, _
ByVal qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configControlIO (ByVal instrumentID As Int32, _
ByVal connector As Int32, _
ByVal signal As Int32, _
ByVal qualifier1 As Int32, _
ByVal qualifier2 As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configControlIO(instrumentID, connector, signal, qualifier1, qualifier2)

Note: The older form Aq_configControlIO is deprecated.
Please convert to the newer version.

102 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configExtClock

Purpose

Configures the external clock of the digitizer.

Parameters

Input

Return Value

Discussion

When clockType is set to 1 or 4, the parameters of the function
AcqrsD1_configHorizontal are ignored! Please refer to your product User Manual,
for the conditions on the clock signals, and to the Programmer’s Guide section 3.16,
External Clock, for the setup parameters and the theory of operation.

Name Type Description
instrumentID ViSession Instrument identifier
clockType ViInt32 = 0 Internal Clock (default at start-up)

= 1 External Clock, continuously running

= 2 External Reference (10 MHz)

= 4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in

mV
delayNbrSamples ViInt32 Number of samples to acquire after trigger (for

digitizers using 'clockType' = 1 only!)
inputFrequency ViReal64 The input frequency of the external clock, for

clockType = 1 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1

only

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 103

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configExtClock(ViSession instrumentID, ViInt32 clockType,
ViReal64 inputThreshold, ViInt32 delayNbrSamples,
ViReal64 inputFrequency, ViReal64 sampFrequency);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure External Clock.vi

Visual Basic Representation

ConfigExtClock (ByVal instrumentID As Long, _
ByVal clockType As Long, _
ByVal inputThreshold As Double, _
ByVal delayNbrSamples As Long, _
ByVal inputFrequency As Double, _
ByVal sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configExtClock (ByVal instrumentID As Int32, _
ByVal clockType As Int32, _
ByVal inputThreshold As Double, _
ByVal delayNbrSamples As Int32, _
ByVal inputFrequency As Double, _
ByVal sampFrequency As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configExtClock(instrumentID, clockType, inputThreshold, delayNbrSamples,
inputFrequency, sampFrequency)

Note: The older form Aq_configExtClock is deprecated.
Please convert to the newer version.

104 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configFCounter

Purpose

Configures a frequency counter measurement

Parameters

Input

Return Value

Discussion

The Frequency mode (type = 0) measures the frequency of the signal applied to the
selected ‘signalChannel’ during the aperture time. The default value of
‘apertureTime’ is 0.001 sec and can be set to any value between 0.001 and 1000.0
seconds. A longer aperture time may improve the measurement accuracy, if the
(externally applied) reference clock has a high accuracy and/or if the signal slew rate
is low.The ‘targetValue’ is a user-supplied estimated of the expected result, and helps
in choosing the optimal measurement conditions. If the supplied value is < 1000.0,
and > 0.0, then the instrument will not use the HF trigger mode to divide the input
frequency. Otherwise, it divides it by 4 in order to obtain a larger frequency range.

The Period mode (type = 1) is similar to the frequency mode, but the function
AcqrsD1_readFCounter returns the inverse of the measured frequency. If the
‘targetValue’ is < 0.001 (1 ms), then the instrument will not use the HF trigger mode,
otherwise it does.

The Totalize by Time mode (type = 2) counts the number of pulses in the signal
applied to the selected ‘signalChannel’ during the time defined by ‘apertureTime’.
The ‘targetValue’ is ignored.

The Totalize by Gate mode (type = 3) counts the number of pulses in the signal
applied to the selected ‘signalChannel’ during the time defined by signal at the I/O A
or I/O B inputs on the front panel. The gate is open while the signal is high, and
closed while the signal is low (if no signal is connected, counting will be enabled,
since there is an internal pull-up resistor). The gate may be opened/closed several
times during the measurement. The measurement must be terminated with the
function AcqrsD1_stopAcquisition.

Name Type Description
instrumentID ViSession Instrument identifier
signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value, may
be 0.0 if no estimate is available.

apertureTime ViReal64 Time in sec, during which the measurement is
executed, see discussion below.

reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 105

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configFCounter(ViSession instrumentID,
ViInt32 signalChannel, ViInt32 type, ViReal64 targetValue,
ViReal64 apertureTime,ViReal64 reserved, ViInt32 flags);

LabVIEW Representation

AqDx Configure FCounter.vi

Visual Basic Representation

ConfigFCounter (ByVal instrumentID As Long, _
ByVal signalChannel As Long, _
ByVal type As Long, _
ByVal targetValue As Double, _
ByVal apertureTime As Double, _
ByVal reserved As Double, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configFCounter (ByVal instrumentID As Int32, _
 ByVal signalChannel As Int32, _
ByVal type As Int32, _
ByVal targetValue As Double, _
ByVal apertureTime As Double, _
ByVal reserved As Double, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configFCounter(instrumentID, signalChannel, typeMes, targetValue,
apertureTime, reserved, flags)

Note: The older form Aq_configFCounter is deprecated.

Please convert to the newer version.

106 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configHorizontal

Purpose

Configures the horizontal control parameters of the digitizer.

Parameters

Input

Return Value

Discussion

Refer to the Programmer’s Guide section 3.12, Trigger Delay and Horizontal
Waveform Position, for a detailed discussion of the value delayTime.

Name Type Description
instrumentID ViSession Instrument identifier
sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds, with respect to the

beginning of the record. A positive number
corresponds to a trigger before the beginning of the
record (post-trigger recording). A negative number
corresponds to pre-trigger recording. It can’t be less
than -(sampInterval * nbrSamples), which
corresponds to 100% pre-trigger.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 107

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configHorizontal(ViSession instrumentID, ViReal64 sampInterval,
ViReal64 delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Horizontal Settings.vi

Visual Basic Representation

ConfigHorizontal (ByVal instrumentID As Long, _
ByVal sampInterval As Double, _
ByVal delayTime As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configHorizontal (ByVal instrumentID As Int32, _
ByVal sampInterval As Double, _
ByVal delayTime As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configHorizontal(instrumentID, sampInterval, delayTime)

Note: The older form Aq_configHorizontal is deprecated.

Please convert to the newer version.

108 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configLogicDevice (DEPRECATED)

Purpose

Configures (programs) on-board logic devices, such as user-programmable FPGA’s.
See Acqrs_configLogicDevice.

NOTE: With the exception of AC and SC Analyzers, this function now needs to be
used only by VxWorks users to specify the filePath for FPGA .bit files. Otherwise it
should no longer have to be used

Parameters

Input

Return Value

Discussion

With flags = 2 in VxWorks systems, the filePathName must point to a directory
containing the FPGA configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with
extension ‘.bit’, e.g. “D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.

For more details on programming on-board logic devices, please refer to the
Programmer’s Guide sections 3.2, Device Initialization and 3.3, Device
Configuration .

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it
can be "ASBUS::n::Block1Dev1" with n ranging
from 0 to the number of modules -1.
When clearing the FPGA’s, the string must be
"Block1DevAll".

filePathName ViChar [] File path and file name
flags ViInt32 flags, may be:

0 = program logic device with data in the file
 “filePathName”
1 = clear the logic device
2 = set path where FPGA .bit files can be found
3 = 0 + use normal search order with AqDrv4.ini
file

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 109

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configLogicDevice(ViSession instrumentID,
ViChar deviceName[], ViChar filePathName[],
ViInt32 flags);

LabVIEW Representation

See Acqrs_configLogicDevice

Visual Basic Representation

ConfigLogicDevice (ByVal instrumentID As Long, _
ByVal deviceName As String, _
ByVal filePathName As String, _
ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configLogicDevice (ByVal instrumentID As Int32, _
ByVal deviceName As String, _
ByVal filePathName As String, _
ByVal modifier As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configLogicDevice(instrumentID, deviceName, filePathName, flags)

110 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configMemory

Purpose

Configures the memory control parameters of the digitizer.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMemory(ViSession instrumentID,
ViInt32 nbrSamples, ViInt32 nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Memory Settings.vi

Visual Basic Representation

ConfigMemory (ByVal instrumentID As Long, _
ByVal nbrSamples As Long, _
ByVal nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMemory (ByVal instrumentID As Int32, _
ByVal nbrSamples As Int32, _
ByVal nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configMemory(instrumentID, nbrSamples, nbrSegments)
Note: The older form Aq_configMemory is deprecated.
Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier
nbrSamples ViInt32 Nominal number of samples to record (per

segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 111

AcqrsD1_configMemoryEx

Purpose

Extended configuration of the memory control parameters of the digitizer including
10-bit-FAMILY & U1071A-FAMILY SAR mode.

Parameters

Input

Return Value

Discussion

This routine is needed to access the new features of some of the digitizers
(U1071A-FAMILY & 10-bit-FAMILY).

The SAR mode should be activated by calling AcqrsD1_configMode with the
appropriate flags value. The desired number of banks should be set here with the
nbrBanks > 1. If the unit has external memory the flags parameter will also have to be
set to 1.

In an instrument equipped with external memory, flags = 1 will force the use of
internal memory which give a lower dead time between segments of a sequence
acquisition.

Name Type Description
instrumentID ViSession Instrument identifier
nbrSamplesHi ViUInt32 Must be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per

segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.
nbrBanks ViInt32 Number of banks to be used for SAR mode
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (for
10-bit-FAMILY & U1071A-FAMILY digitizers
with extended memory options only).

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

112 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMemoryEx(ViSession instrumentID,
ViUInt32 nbrSamplesHi, ViUInt32 nbrSamplesLo,
ViInt32 nbrSegments, ViInt32 nbrBanks,
ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Extended Memory Settings.vi

Visual Basic Representation

ConfigMemoryEx (ByVal instrumentID As Long, _
ByVal nbrSamplesHi As Long, _
ByVal nbrSamplesLo As Long, _
ByVal nbrSegments As Long, -
ByVal nbrBanks As Long, -
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMemoryEx (ByVal instrumentID As Int32, _
ByVal nbrSamplesHi As UInt32, _
ByVal nbrSamplesLo As UInt32, _
ByVal nbrSegments As Int32, -
ByVal nbrBanks As Int32, -
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configMemoryEx(instrumentID, nbrSamplesHi, nbrSamplesLo,
nbrSegments, nbrBanks, flags)

Note: The older form Aq_configMemoryEx is deprecated.
 Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 113

AcqrsD1_configMode

Purpose

Configures the operational mode of Averagers and Analyzers and certain special
Digitizer acquisition modes

Parameters

Input

Return Value

Discussion

Most digitizers only permit the default mode = 0. Real-time averagers support the
normal data acquisition mode (0) and the averager mode (2). The analyzers
(digitizers with buffered acquisition memory) (AP101/AP201 and AP235/AP240
with SSR) support
both the normal data acquisition mode (0) and the buffered mode (3). AC/SC

Name Type Description
instrumentID ViSession Instrument identifier
mode ViInt32 0 = normal data acquisition

1 = AC/SC stream data to DPU
2 = averaging mode (only in real-time averagers)
3 = buffered data acquisition (only in
AP101/AP201
 analyzers)
5 = PeakTDC mode for Analyzers with this
 option.
6 = frequency counter mode
7 = AP235/AP240-SSR mode

modifier ViInt32 Currently not used, set to 0
flags ViInt32 If ‘mode’ = 0, this variable can take these values:

 0 = ‘normal’ (default value)
 1 = ‘Start on Trigger’ mode
 2 = ‘Sequence Wrap’ mode (all digitizers except
 U1071A-FAMILY and 10-bit-FAMILY)
 10 = SAR mode

For the U1084A Averager only, if ‘mode’ = 2, this
variable can take the following values:

 0 = ‘normal’ (default value)
 10 = dual bank SAR mode

For all other modules, this variable is not used if
‘mode’ = 2 (set to 0).

For AP101/AP201 units, if ‘mode’ = 3, this
variable can take these values:

 0 = acquire into 1st memory bank
 1 = acquire into 2nd memory bank

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

114 Programmer’s Reference Manual

2 Device Driver Function Reference

analyzers support both the normal data acquisition mode (0) and the stream data to
DPU mode (1).

The normal data acquisition mode (0) supports the following submodes:

• flags = 0: normal digitizer mode

• flags = 1: ‘StartOnTrigger’ mode, whereby data recording only
begins after the receipt of a valid trigger. For details, see
Programmer’s Guide section 3.18, Special Operating Modes.

• flags = 2: ‘Sequence Wrap’ mode, whereby a multi-segment
acquisition (with ‘nbrSegments’ > 2, when configured with the
function AcqrsD1_configMemory), does not stop after
‘nbrSegments’, but wraps around to zero, indefinitely. Thus, such
acquisitions must be stopped with the function
AcqrsD1_stopAcquisition at the appropriate moment. For details,
see Programmer’s Guide section 3.18, Special Operating Modes.

• flags = 10: SAR mode. This mode allows simultaneous data
acquisition and readout and is available on some models only.
AcqrsD1_configMemoryEx must be used to set the desired number
of banks. When SAR mode is active any external memory present is
not available.

The averaging mode (2) has the following differences from the default mode (0):

• The function AcqrsD1_acquire(): In mode 0, it starts a normal
waveform acquisition, whereas in mode 2, it makes the instrument
run as a real-time averager.

• The function AcqrsD1_readData() with dataType = ReadReal64:
In mode 0, it returns the last acquired waveform, whereas in mode 2,
it returns the averaged waveform (in Volts).

The buffered data acquisition mode (3) and the SSR mode (7) have the following
differences from the default mode (0):

• The function AcqrsD1_acquire(): In mode 0, it starts a normal
waveform acquisition, whereas in modes 3 or 7, it starts an
acquisition into the next memory bank or a special memory bank, as
defined by flags.

• The functions AcqrsD1_readData(): In mode 0, they return the last
acquired waveform from the normal acquisition memory, whereas in
mode 3, they return data from a memory bank (opposite to what is
defined by flags).

Device Driver Function Reference 2

Programmer’s Reference Manual 115

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMode(ViSession instrumentID,
 ViInt32 mode, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Operation Mode.vi

Visual Basic Representation

ConfigMode (ByVal instrumentID As Long, _
ByVal mode as Long, _
ByVal modifier As Long, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMode (ByVal instrumentID As Int32, _
ByVal mode as Int32, _
ByVal modifier As Int32, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configMode(instrumentID, mode, modifier, flags)

Note: The older form Aq_configMode is deprecated.

Please convert to the newer version.

116 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_configMultiInput

Purpose

Selects the active input when there are multiple inputs on a channel. It is useful for
Averagers, Analyzers, and some digitizer models.

Parameters

Input

Return Value

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than
1 input per digitizer, e.g. DP211). On the "normal" instruments with a single input per
channel, this function may be ignored.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMultiInput(ViSession instrumentID,
ViInt32 channel, ViInt32 input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Multiplexer Input.vi

Visual Basic Representation

ConfigMultiInput (ByVal instrumentID As Long, _
ByVal channel As Long, _
ByVal connection As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMultiInput (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByVal connection As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configMultiInput(instrumentID, channel, input)
Note: The older form Aq_configMultiInput is deprecated.
 Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
input ViInt32 = 0 set to input connection A

= 1 set to input connection B

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 117

AcqrsD1_configSetupArray

Purpose

Sets the configuration for an array of configuration values. It is useful for Analyzers
only.

Parameters

Input

Return Value

GateParameters in AqGateParameters

Discussion

The user has to take care to allocate sufficient memory for the setupData.
nbrSetupObj should not be higher than what the allocated setupData holds.

The SSR option allows up to 4095 gate definitions. The AP101/AP201 analyzers are
limited to 64 gate definitions.

Note: The driver contains a set of 4095(64) default AqGateParameters, defined as {
{0,256} {256, 256} {512, 256} {768, 256} ... }.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
nbrSetupObj ViInt32 Number of setup objects in the array
setupData ViAddr Pointer to an array containing the setup objects

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type and supply its
address as ‘setupData’.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
GatePos ViInt32 Start position of the gate (must be multiple of 4)
GateLength ViInt32 Length of the gate (must be multiple of 4)

118 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configSetupArray(ViSession instrumentID,
ViInt32 channel, ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Setup Array.vi

Visual Basic Representation

ConfigSetupArray (ByVal instrumentID As Long, _
ByVal channel As Long, _
ByVal setupType As Long, _
ByVal nbrSetupObj As Long, _
setupData As Any) As Long

Visual Basic .NET Representation

AcqrsD1_configSetupArray (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByVal setupType As Int32, _
ByVal nbrSetupObj As Int32, _
ByRef setupData As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configSetupArray(instrumentID, channel, setupType, nbrSetupObj, setupData)

Note: The older form Aq_configSetupArray is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 119

AcqrsD1_configTrigClass

Purpose

Configures the trigger class control parameters of the digitizer.

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can
be retrieved with the Acqrs_getInstrumentInfo function.

For more details on the trigger source pattern in AS bus-connected MultiInstruments,
please refer to the Programmer’s Guide section 3.17.2, Trigger Source
Numbering with AS bus.

For configuring the TV trigger see AcqrsD1_configTrigTV .

The U1071A-FAMILY OR, NOR, AND, and NAND patterns can be implemented as

sourcePattern = 0x800n0001for Channel 1 + External or
sourcePattern = 0x800n0002for Channel 2 + External.

The 10-bit family OR, NOR, AND, and NAND patterns can be implemented as

sourcePattern = 0x800n000 fwhere 8 can be either 8 or 0 and f can be any value
between 0 and f consistent with the number of channels available in a single module.

Name Type Description
instrumentID ViSession Instrument identifier
trigClass ViInt32 = 0 edge trigger

= 1 TV trigger (12-bit-FAMILY External only)
= 3 OR (10-bit & U1071A-FAMILIES)
= 4 NOR (10-bit & U1071A-FAMILIES)
= 5 AND (10-bit & U1071A-FAMILIES)
= 6 NAND (10-bit & U1071A-FAMILIES)

sourcePattern ViInt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (AS bus operation).
See discussion below.

validatePattern ViInt32 Currently unused, set to “0”
holdType ViInt32 Currently unused, set to “0”
holdoffTime ViReal64 Currently unused, set to “0.0”
reserved ViReal64 Currently unused, set to “0.0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

120 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigClass(ViSession instrumentID,
ViInt32 trigClass, ViInt32 sourcePattern,
ViInt32 validatePattern, ViInt32 holdType,
ViReal64 holdoffTime, ViReal64 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Trigger Class.vi

Visual Basic Representation

ConfigTrigClass (ByVal instrumentID As Long, _
 ByVal trigClass As Long, _
 ByVal sourcePattern As Long, _
 ByVal validatePattern As Long, _
 ByVal holdType As Long, _
 ByVal holdoffTime As Double, _
 ByVal reserved As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigClass (ByVal instrumentID As Int32, _
 ByVal trigClass As Int32, _

 ByVal sourcePattern As Int32, _
 ByVal validatePattern As Int32, _
 ByVal holdType As Int32, _
 ByVal holdoffTime As Double, _
 ByVal reserved As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configTrigClass(instrumentID, trigClass, sourcePattern, validatePattern,
holdType, holdoffTime, reserved)

Note: The older form Aq_configTrigClass is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 121

AcqrsD1_configTrigSource

Purpose

Configures the trigger source control parameters for the specified trigger source
(channel or External).

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can
be retrieved with the function Acqrs_getInstrumentInfo. See the Programmer’s
Guide section AS bus Operation for additional details on that case.

The allowed range for the trigger threshold depends on the model and the channel
chosen. See your product User Manual.

NOTE: Some of the possible states may be unavailable in some digitizers. In
particular, the trigCoupling choices of ‘DC, 50 Ω’ and ‘AC, 50 Ω’ are only needed
for modules that have both 50 Ω and 1 MΩ external input impedance possibilities.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal

sources
= -1..-(Number of ExtTrigSources) for external
sources
See discussion below.

trigCoupling ViInt32 = 0 DC
= 1 AC
= 2 HF Reject (if available)
= 3 DC, 50 W (ext. trigger only, if available)
= 4 AC, 50 W (ext. trigger only, if available)

trigSlope ViInt32 = 0 Positive
= 1 Negative

= 2 out of Window

= 3 into Window

= 4 HF divide

= 5 Spike Stretcher
trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of

the channel, or in mV if using an External trigger
source. See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when
Window trigger is selected

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

122 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigSource(ViSession instrumentID,
ViInt32 channel, ViInt32 trigCoupling,
ViInt32 trigSlope, ViReal64 trigLevel1, ViReal64 trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Extended Trigger Source.vi

Visual Basic Representation

ConfigTrigSource (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 ByVal trigCoupling As Long, _
 ByVal trigSlope As Long, _
 ByVal trigLevel1 As Double, _
 ByVal trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigSource (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByVal trigCoupling As Int32, _
 ByVal trigSlope As Int32, _
 ByVal trigLevel1 As Double, _
 ByVal trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configTrigSource(instrumentID, channel, trigCoupling, trigSlope,
trigLevel1, trigLevel2)

Note: The older form Aq_configTrigSource is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 123

AcqrsD1_configTrigTV

Purpose

Configures the TV trigger parameters (12-bit-FAMILY only).

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can
be retrieved with the Acqrs_getInstrumentInfo function.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external

sources
See discussion below.

standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)
= 2 525/60/2:1 (NTSC)

field ViInt32 = 1 Field 1 - odd
= 2 Field 2 - even

line ViInt32 = line number, depends on the parameters above:

For 'standard' = 625/50/2:1

= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2

For 'standard' = 525/60/2:1

= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

124 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigTV (ViSession instrumentID, ViInt32 channel,
ViInt32 standard, ViInt32 field, ViInt32 line);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Trigger TV.vi

Visual Basic Representation

ConfigTrigTV (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 ByVal standard As Long, _
 ByVal field As Long, _
 ByVal line AS Long) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigTV (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByVal standard As Int32, _
 ByVal field As Int32, _
 ByVal line AS Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configTrigTV(instrumentID, channel, standard, field, line)

Note: The older form Aq_configMemoryEx is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 125

AcqrsD1_configVertical

Purpose

Configures the vertical control parameters for a specified channel of the digitizer.

Parameters

Input

Return Value

Discussion

For the DC440 and DP310 the coupling input is used to select the signal input: DC,
50 Ω for the Standard input and AC, 50 Ω for the Direct HF input.

Some instruments have no bandwidth limiting capability. In this case, use bandwidth
= 0. With channel = -1 this function can be used to set the Full Scale Range and the
bandwidth limit of the external trigger for the DC271-FAMILY digitizers, the
10-bit-FAMILY, the AC/SC, and the AP240/AP235 signal analyzer platforms. For
the case of a 10-bit-FAMILY or DC271-FAMILY MultiInstrument using AS bus, the
external triggers of the additional modules are numbered –3, -5, … following the
principles given in the Programmer’s Guide section 3.17.2, Trigger Source
Numbering with AS bus.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 0 Ground (Averagers ONLY)

= 1 DC, 1 MΩ
= 2 AC, 1 MΩ
= 3 DC, 50 Ω
= 4 AC, 50 Ω

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

126 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configVertical(ViSession instrumentID,
ViInt32 channel,ViReal64 fullScale,
ViReal64 offset, ViInt32 coupling, ViInt32 bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Vertical Settings.vi

Visual Basic Representation

ConfigVertical (ByVal instrumentID As Long, ByVal Channel As Long, _
 ByVal fullScale As Double, ByVal offset As Double, _
 ByVal coupling As Long, _
 ByVal bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configVertical (ByVal instrumentID As Int32, _
ByVal Channel As Int32, _

 ByVal fullScale As Double, _
ByVal offset As Double, _

 ByVal coupling As Int32, _
 ByVal bandwidth As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configVertical(instrumentID, channel, fullScale, offset, coupling, bandwidth)

Note: The older form Aq_configVertical is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 127

 AcqrsD1_errorMessage

Purpose

Translates an error code into a human readable form. The new function
Acqrs_errorMessage is to be preferred.

Parameters

Input

Output

Return Value

Discussion

There is no Matlab MEX implementation of this function.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_errorMessage(ViSession instrumentID, ViStatus errorCode,
ViChar errorMessage[]);

LabVIEW Representation

See Acqrs_errorMessage

Visual Basic Representation

errorMessage (ByVal instrumentID As Long, ByVal errorCode As Long, _
ByVal errorMessage As String) As Long

Visual Basic .NET Representation

AcqrsD1_errorMessage (ByVal instrumentID As Int32, _
ByVal errorCode As Int32, _
ByVal errorMessage As String) As Int32

Name Type Description
instrumentID ViSession Instrument identifier can be VI_NULL

errorCode ViStatus Error code (returned by a function) to be translated

Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size

512) into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

128 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_errorMessageEx

Purpose

Translates an error code into a human readable form and returns associated
information. The new function Acqrs_errorMessage is to be preferred.

Parameters

Input

Output

Return Value

Discussion

This function should be called immediately after the return of the error status to
ensure that the additional information remains available. For file errors, the returned
message will contain the file name and the original 'ansi' error string. This is
particularly useful for calls to the following functions:

Name Type Description
instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize ViInt32 Size of the errorMessage character buffer in bytes

 (suggested size 512)

Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size

512) into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Acqrs_calibrate Acqrs_calibrateEx
Acqrs_configLogicDevice AcqrsD1_configMode
Acqrs_init Acqrs_InitWithOptions

Device Driver Function Reference 2

Programmer’s Reference Manual 129

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_errorMessageEx(ViSession instrumentID, ViStatus errorCode,
ViChar errorMessage[], ViInt32 errorMessageSize);

LabVIEW Representation

See Acqrs_errorMessage

Visual Basic Representation

errorMessageEx (ByVal instrumentID As Long, ByVal errorCode As Long, _
ByVal errorMessage As String,
ByVal errorMessageSize As Long) As Long

Visual Basic .NET Representation

AcqrsD1_errorMessageEx (ByVal instrumentID As Int32, _
ByVal errorCode As Int32, _
ByVal errorMessage As String,
ByVal errorMessageSize As Int32) As Int32

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentID, errorCode)

130 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_forceTrig

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters

Input

Return Value

Discussion

The function returns immediately after ordering the acquisition to stop. One must
therefore wait until the acquisition has terminated before reading the data, by
checking the status with the function AcqrsD1_acqDone. If the external clock is
enabled, and there is no clock signal applied to the device, AcqrsD1_acqDone will
never return
done = VI_TRUE. Consider using a timeout and calling AcqrsD1_stopAcquisition
if it occurs. In multisegment mode, the current segment is acquired, the acquisition is
terminated and the data and timestamps of subsequent segments are invalid.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_forceTrig(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi

Visual Basic Representation

ForceTrig (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrig (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

See AcqrsD1_forceTrigEx

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 131

AcqrsD1_forceTrigEx

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters

Input

Return Value

Discussion

The function returns immediately after ordering the acquisition to stop. One must
therefore wait until the acquisition has terminated before reading the data, by
checking the status with the function AcqrsD1_acqDone. If the external clock is
enabled, and there is no clock signal applied to the device, AcqrsD1_acqDone will
never return
done = VI_TRUE. Consider using a timeout and calling AcqrsD1_stopAcquisition
if it occurs.

For forceTrigType = 0, the 'trigOut' Control IO will NOT generate a trigger output.
This mode is equivalent to AcqrsD1_forceTrig. In multisegment mode, the current
segment is acquired, the acquisition is terminated and the data and timestamps of
subsequent segments are invalid.

For forceTrigType = 1, 'trigOut' Control IO will generate a trigger output on each
successful call. In multisegment mode, the acquisition advances to the next segment
and then waits again for a trigger. If no valid triggers are provided to the device, the
application must call AcqrsD1_forceTrigEx as many times as there are segments.
Every acquired segment will be valid. This mode is only supported for single (i.e.
non-AS bus-connected) digitizers (not Averagers or Analyzers).

Name Type Description
instrumentID ViSession Instrument identifier
forceTrigType ViInt32 = 0 Sends a software trigger to end the full

 acquisition
= 1 Sends a single software trigger and generates
 the TrigOut hardware signal

modifier ViInt32 Currently not used
flags ViInt32 Currently not used

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

132 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_forceTrigEx(ViSession instrumentID ,
ViInt32 forceTrigType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi

Visual Basic Representation

ForceTrigEx (ByVal instrumentID As Long, _
ByVal forceTrigType as Long, _
ByVal modifier As Long, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrigEx (ByVal instrumentID As Int32, _
ByVal forceTrigType as Int32, _
ByVal modifier As Int32, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_forceTrigEx(instrumentID, forceTrigType, modifier, flags)

Note: The older form Aq_forceTrigEx is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 133

AcqrsD1_freeBank

Purpose

Free current bank during SAR acquisitions.

Parameters

Input

Return Value

Discussion

Calling this function indicates to the driver that the current SAR bank has been read
and can be reused for a new acquisition. This call should be made after having read
all desired data for the bank.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_freeBank(ViSession instrumentID, ViInt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Free Bank.vi

Visual Basic Representation

FreeBank (ByVal instrumentID As Long, reserved As Long) As Long

Visual Basic .NET Representation

AcqrsD1_freeBank (ByVal instrumentID As Int32,
ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_freeBank(instrumentID, reserved)

Name Type Description
instrumentID ViSession Instrument identifier
reserved ViInt32 Reserved

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

134 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getAvgConfig

Purpose

Returns an attribute from the analyzer/averager configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfig.

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter.

See AcqrsD1_configAvgConfigfor the list of
accepted strings.

Name Type Description
value ViAddr Requested information value.

ViAddr resolves to void* in C/C++. The user
must allocate the appropriate variable type (as
listed under AcqrsD1_configAvgConfig
) and supply its address as 'value'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 135

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViAddr value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Averager Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.

Visual Basic Representation

GetAvgConfig (ByVal instrumentID As Long, _
ByVal channelNbr As Long, _
ByVal parameterString As String, _
value as Any) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfig (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value as Int32) As Int32

or

AcqrsD1_getAvgConfig (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value as Double) As Int32

MATLAB MEX Representation

Please use the MEX representation associated with
AcqrsD1_configAvgConfigInt32 or
 AcqrsD1_configAvgConfigReal64.

Note: The older form Aq_getAvgConfig is deprecated.

Please convert to the newer version.

136 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getAvgConfigInt32

Purpose

Returns a long attribute from the analyzer/averager configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfigInt32.

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter.

See AcqrsD1_configAvgConfigInt32 for the list
of accepted strings.

Name Type Description
value ViInt32 *addr Requested information value.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 137

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigInt32(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViInt32 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Averager Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.

Visual Basic Representation

GetAvgConfigInt32 (ByVal instrumentID As Long, _
ByVal channelNbr As Long, _
ByVal parameterString As String, _
value as Long) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfigInt32 (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value as Int32) As Int32

MATLAB MEX Representation

[status value]= AqD1_getAvgConfigInt32(instrumentID, channel, parameterString)

138 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getAvgConfigReal64

Purpose

Returns a double attribute from the analyzer/averager configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfigReal64.

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter.

See AcqrsD1_configAvgConfigReal64for the list
of accepted strings.

Name Type Description
value ViReal64 * Requested information value.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 139

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigReal64(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViReal64 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Averager Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.

Visual Basic Representation

GetAvgConfigReal64 (ByVal instrumentID As Long, _
ByVal channelNbr As Long, _
ByVal parameterString As String, _
value as Double) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfigReal64 (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value as Double) As Int32

MATLAB MEX Representation

[status value]= AqD1_getAvgConfigReal64(instrumentID, channel, parameterString)

140 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getChannelCombination

Purpose

Returns the current channel combination parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configChannelCombination.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrConvertersPe
rChannel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 141

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getChannelCombination(
ViSession instrumentID,
ViInt32* nbrConvertersPerChannel,
ViInt32* usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Channel Combination.vi

Visual Basic Representation

GetChannelCombination (ByVal instrumentID As Long, _
 nbrConvertersPerChannel As Long, _
 usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getChannelCombination (ByVal instrumentID As Int32, _
 ByRef nbrConvertersPerChannel As Int32, _
 ByRef usedChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrConvertersPerChannel usedChannels]=AqD1_getChannelCombination(instrumentID)

Note: The older form Aq_getChannelCombination is deprecated.

Please convert to the newer version.

142 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getControlIO

Purpose

Returns the configuration of a ControlIO connector. (For
DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/ U1071A-FAMILY /10-bit
FAMILY/AC/SC and U1084A only)

Parameters

Input

Output

Return Value

Discussion

ControlIO connectors are front panel IO connectors for special purpose control
functions of the digitizer. Typical examples are user-controlled acquisition control
(trigger enable) or control output signals such as ’10 MHz reference’ or ‘trigger
ready’.

The connector numbers are limited to 0 and the supported values. To find out which
connectors are supported by a given module, use this function with connector = 0:

 AcqrsD1_getControlIO(instrID, 0, &ctrlIOPattern, NULL, NULL);
In this case, the returned value of signal is the bit-coded list of the connectors that are
available in the digitizer. E.g. If the connectors 1 (I/O A), 2 (I/O B) and 9 (TrigOut)
are present, the bits 1, 2 and 9 of signal are set, where bit 0 is the LSbit and 31 is the

Name Type Description
instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel I/O A (MMCX or MCX connector)
 2 = Front Panel I/O B (MMCX or MCX
connector)
 3 = Front Panel I/O C (MCX connector, if present)

 9 = Front Panel Trigger Out (MMCX or MCX
connector)

Name Type Description
signal ViInt32 Indicates the current use of the specified connector

0 = Disabled, 6 = Enable trigger etc.
For a detailed list, see the description of
AcqrsD1_configControlIO

qualifier1 ViInt32 The returned values depend on the type of
connector, see the discussion in
AcqrsD1_configControlIO

qualifier2 ViReal64 The returned values depend on the module, see the
discussion in AcqrsD1_configControlIO

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 143

MSbit. Thus, the low order 16 bits of signal (or ctrlIOPattern in the example above)
would be equal to 0x206.

The DC271-FAMILY, 10-bit-FAMILY, AP-FAMILY, U1071A-FAMILY,
12-bit-FAMILY, and AC/SC cards support the connectors 1 (front panel I/O A
MMCX coax), 2 (front panel I/O B MMCX coax) and 9 (front panel Trig Out
MMCX coax).

144 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getControlIO(ViSession instrumentID,
 ViInt32 connector, ViInt32* signal,
 ViInt32* qualifier1, ViReal64* qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Control IO Connectors.vi

Visual Basic Representation

GetControlIO (ByVal instrumentID As Long, _
 ByVal connector As Long, _
 signal As Long, _
 qualifier1 As Long, _
 qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getControlIO (ByVal instrumentID As Int32, _
 ByVal connector As Int32, _
 ByRef signal As Int32, _
 ByRef qualifier1 As Int32, _
 ByRef qualifier2 As Double) As Int32

MATLAB MEX Representation

[status signal qualifier1 qualifier2]= AqD1_getControlIO(instrumentID, connector)

Note: The older form Aq_getControlIO is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 145

AcqrsD1_getExtClock

Purpose

Returns the current external clock control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configExtClock.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
clockType ViInt32 = 0 Internal Clock (default at start-up)

= 1 External Clock, continuously running
= 2 External Reference (10 MHz)
= 4 External Clock, with start/stop sequence

inputThreshold ViReal64 Input threshold for external clock or reference in
mV

delayNbrSample
s

ViInt32 Number of samples to acquire after trigger , for
'clockType' = 1 only!

inputFrequency ViReal64 The presumed input frequency of the external
clock, for clockType = 1 only

sampFrequency ViReal64 The desired Sampling Frequency, for clockType =
1 only

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

146 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getExtClock(ViSession instrumentID,
ViInt32* clockType, ViReal64* inputThreshold,
ViInt32* delayNbrSamples, ViReal64* inputFrequency,
ViReal64* sampFrequency);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query External Clock.vi

Visual Basic Representation

GetExtClock (ByVal instrumentID As Long, _
 clockType As Long, _
 inputThreshold As Double, _
 delayNbrSamples As Long, _
 inputFrequency As Double, _
 sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getExtClock (ByVal instrumentID As Int32, _
 ByRef clockType As Int32, _
 ByRef inputThreshold As Double, _
 ByRef delayNbrSamples As Int32, _
 ByRef inputFrequency As Double, _
 ByRef sampFrequency As Double) As Int32

MATLAB MEX Representation

[status clockType inputThreshold delayNbrSamples inputFrequency sampFrequency]=
AqD1_getExtClock(instrumentID)

Note: The older form Aq_getExtClock is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 147

AcqrsD1_getFCounter

Purpose

Returns the current frequency counter configuration

Parameters

Input

Output

Return Value

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value
apertureTime ViReal64 Time in sec, during which the measurement is

executed
reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

148 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getFCounter(ViSession instrumentID,
ViInt32* signalChannel, ViInt32* type, ViReal64* targetValue,
ViReal64* apertureTime, ViReal64* reserved, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query FCounter.vi

Visual Basic Representation

GetFCounter (ByVal instrumentID As Long, _
 signalChannel As Long, _
 type As Long, _
 targetValue As Double, _
 apertureTime As Double, _
 reserved As Double, _
 flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getFCounter (ByVal instrumentID As Int32, _
 ByRef signalChannel As Int32, _
 ByRef type As Int32, _
 ByRef targetValue As Double, _
 ByRef apertureTime As Double, _
 ByRef reserved As Double, _
 ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status signalChannel typeMes targetValue apertureTime reserved flags]=
AqD1_getFCounter(instrumentID)

Note: The older form Aq_getFCounter is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 149

AcqrsD1_getHorizontal

Purpose

Returns the current horizontal control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configHorizontal.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

150 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getHorizontal(ViSession instrumentID, ViReal64* sampInterval,
ViReal64* delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Horizontal Settings.vi

Visual Basic Representation

GetHorizontal (ByVal instrumentID As Long, _
 sampInterval As Double, _
 delayTime As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getHorizontal (ByVal instrumentID As Int32, _
 ByRef sampInterval As Double, _
 ByRef delayTime As Double) As Int32

MATLAB MEX Representation

[status sampInterval delayTime] = AqD1_getHorizontal(instrumentID)

Note: The older form Aq_getHorizontal is deprecated.
Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 151

AcqrsD1_getInstrumentData (DEPRECATED)

Purpose

Returns some basic data about a specified digitizer. See Acqrs_getInstrumentData.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getInstrumentData(ViSession instrumentID,
ViChar name[], ViInt32* serialNbr,
ViInt32* busNbr, ViInt32* slotNbr);

LabVIEW Representation

Please refer to Acqrs_getInstrumentData.

Visual Basic Representation

GetInstrumentData (ByVal instrumentID As Long, ByVal name As String, _
 serialNbr As Long, busNbr As Long, _
 slotNbr As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getInstrumentData (ByVal instrumentID As Int32, _
ByVal name As String, _

 ByRef serialNbr As Int32, _
ByRef busNbr As Int32, _

 ByRef slotNbr As Int32) As Int32

MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]= Aq_getInstrumentData(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
name ViChar [] Pointer to user-allocated string, into which the

model name is returned (length < 32 characters).
serialNbr ViInt32 Serial number of the digitizer.
busNbr ViInt32 Bus number of the digitizer location.
slotNbr ViInt32 Slot number of the digitizer location. (logical)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

152 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getInstrumentInfo (DEPRECATED)

Purpose

Returns general information about a specified instrument. See
Acqrs_getInstrumentInfo

Parameters

Input

Output

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.

Name Type Description
infoValue ViAddr Requested information value.

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed
below) and supply its address as 'infoValue'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Returned
Type

Description

"ASBus_m_BusNb" ViInt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"ASBus_ m_IsMaster" ViInt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules
–1).

"ASBus_ m_PosInCrate" ViInt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules –1).

"ASBus_ m_SerialNb" ViInt32 Serial number of the m'th module of a multi-instrument.
m runs from 0 to (nbr of modules –1).

"ASBus_ m_SlotNb" ViInt32 Slot number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"CrateNb" ViInt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 Calibrated Delay Offset

(only useful for recovery of battery backed-up
acquisitions)

"DelayScale" ViReal64 Calibrated Delay Scale
(only useful for recovery of battery backed-up
acquisitions)

"ExtCkRatio" ViReal64 Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" ViInt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" ViInt32 Returns 1 if the module has an acquisition started but is

not yet ready to accept a trigger.
"LogDevDataLinks" ViInt32 Number of available data links for a streaming analyzer

Device Driver Function Reference 2

Programmer’s Reference Manual 153

Discussion

For the case "TrigLevelRange chan" the result is to be interpreted as ± (returned
value), which is in % of the vertical Full Scale of the channel, or in mV for an
external trigger source. The value of chan takes is the same as the values of 'channel'
in AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a MultiInstrument and runs
from 0 to (nbr of modules –1) following the channel order. It may be omitted on
single digitizers or for the master of a MultiInstrument

For the case "Options" the available options are returned in a ‘,’ separated string. The
options include the memory size if additional memory has been installed in the form
"MnM" for digitizers where n is the number of megabytes available or "PnMB" for
AP235/AP240 and "AnM" for AP100/AP101/AP200/AP201. Other possible options
include "NoASBus", "BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The
infoValue should point to a string of at least 32 characters.

"LOGDEVHDRBLOCKmDEVn
S string"

ViChar[] Returns information about FPGA firmware loaded. See
comments below.

"MainFirmwareFullVersion" ViUInt32 get the full "firmware version" value of the loaded main
Firmware

"MainFirmwareFunction" ViUInt32 get the "firmware function" value, which identifies the
capabilities of the loaded main Firmware

"MaxSamplesPerChannel" ViInt32 Maximum number of samples per channel available in
digitizer mode

"NbrADCBits" ViInt32 Number of bits of data per sample from this modules
ADCs

"NbrExternalTriggers" ViInt32 Number of external trigger sources
"NbrInternalTriggers" ViInt32 Number of internal trigger sources
"NbrModulesInInstrument" ViInt32 Number of modules in this instrument. Individual

modules (not connected through AS bus) return 1.
"Options" ViChar[] List of options, separated by ‘,’, installed in this

instrument.
"OverloadStatus chan" ViInt32 Returns 1 if chan is in overload, 0 otherwise.

chan takes on the same values as 'channel' in
AcqrsD1_configTrigSource.

"OverloadStatus ALL" ViInt32 Returns 1 if any of the signal or external trigger inputs is
in overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine
which channel is in overload.

"PosInCrate" ViInt32 Physical slot number (position) in cPCI crate
"SSRTimeStamp" ViReal64 Current value of time stamp for Analyzers in SSR mode.
"TbNextSegmentPad" ViInt32 Returns the additional array space (in samples) per

segment needed for the image read of
AcqrsD1_readData. It concerns the data available after
the next call to AcqrsD1_acquire, as opposed to any
current or past acquisition with different conditions.

"TbSegmentPad" ViInt32 Returns the additional array space (in samples) per
segment needed for the image read of
AcqrsD1_readData. It concerns the current data
available, as opposed to any future acquisition with
different conditions.

"Temperature m" ViInt32 Temperature in degrees Centigrade (oC)
"TrigLevelRange chan" ViReal64 Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] String containing the full driver version.

154 Programmer’s Reference Manual

2 Device Driver Function Reference

The case of "LOGDEVHDRBLOCKmDEVnS string" is one in which several
possible values of m, n, and string are allowed. The single digit number m refers to
the FPGA block in the module. For the moment this must always have the value 1.
The single digit number n refers to the FPGA device in the block. It can have values
in the range 1,2,3,4 depending on the module. Among the interesting values of string
are the following case-sensitive strings: "name", "version", "versionTxt",
"compDate", "model".

The case of "SSRTimeStamp" should only be used when data is readable. In other words, it
should only be used between the moment at which the processing is done and the moment
when AcqrsD1_processData is called to enable the subsequent bank switch.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getInstrumentInfo(ViSession instrumentID,
ViString parameterString, ViAddr infoValue);

LabVIEW Representation

Please refer to Acqrs_getInstrumentInfo

Visual Basic Representation

NOTE: In Visual Basic, a returned type of ViInt32 should be declared as Long,
while a returned type of ViReal64 should be declared as Double.

GetInstrumentInfo (ByVal instrumentID As Long, _
ByVal parameterString As String, _
infoValue As Any) As Long

Visual Basic .NET Representation

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Int32) As Int32

or

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Double) As Int32

or

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
ByVal parameterString As String, _
ByVal infoValue As String) As Int32

MATLAB MEX Representation

[status infoValue] = Aq_getInstrumentInfo(instrumentID, parameterString, dataTypeString)
Allowed values of dataTypeString are ’integer’, ’double’, or ’string’

Device Driver Function Reference 2

Programmer’s Reference Manual 155

AcqrsD1_getMemory

Purpose

Returns the current memory control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMemory.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrSamples ViInt32 Nominal number of samples to record (per

segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

156 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMemory(ViSession instrumentID,
ViInt32* nbrSamples, ViInt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Memory Settings.vi

Visual Basic Representation

GetMemory (ByVal instrumentID As Long, _
 nbrSamples As Long, _
 nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemory (ByVal instrumentID As Int32, _
 ByRef nbrSamples As Int32, _
 ByRef nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSamples nbrSegments] = AqD1_getMemory(instrumentID)

Note: The older form Aq_getMemory is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 157

AcqrsD1_getMemoryEx

Purpose

Returns the current extended memory control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMemoryEx.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrSamplesHi ViUInt32 Will be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per

segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.
nbrBanks ViInt32 Number of banks to be used for 10-bit-FAMILY &

U1071A-FAMILY SAR mode
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (for
10-bit-FAMILY & U1071A-FAMILY digitizers
with extended memory options only).

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

158 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMemoryEx(ViSession instrumentID,
ViUInt32* nbrSamplesHi, ViUInt32* nbrSamplesLo,
ViInt32* nbrSegments, ViInt32* nbrBanks, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Memory Settings.vi

Visual Basic Representation

GetMemoryEx (ByVal instrumentID As Long, _
 nbrSamplesHi As Long, _

nbrSamplesLo As Long, _
 nbrSegments As Long, -

nbrBanks As Long, -
flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemoryEx (ByVal instrumentID As Int32, _
 ByRef nbrSamplesHi As UInt32, _

ByRef nbrSamplesLo As UInt32, _
 ByRef nbrSegments As Int32, -

ByRef nbrBanks As Int32, -
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status nbrSamplesHi nbrSamplesLo nbrSegments nbrBanks flags]=
AqD1_getMemoryEx(instrumentID)

Note: The older form Aq_getMemoryEx is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 159

AcqrsD1_getMode

Purpose

Returns the current operational mode of the digitizer

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMode.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
mode ViInt32 Operational mode
modifier ViInt32 Modifier, currently not used
flags ViInt32 Flags

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

160 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMode(ViSession instrumentID,
 ViInt32* mode, ViInt32* modifier, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Operation Mode.vi

Visual Basic Representation

GetMode (ByVal instrumentID As Long, _
mode as Long, _
modifier As Long, _
flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMode (ByVal instrumentID As Int32, _
ByRef mode as Int32, _
ByRef modifier As Int32, _
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status mode modifiers flags] = AqD1_getMode(instrumentID)

Note: The older form Aq_getMode is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 161

AcqrsD1_getMultiInput

Purpose

Returns the multiple input configuration on a channel.

Parameters

Input

Output

Return Value

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than
1 input per digitizer, e.g. DP211). On the "normal" instruments with a single input per
channel, this function may be ignored.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan

Name Type Description
input ViInt32 = 0 input connection A

= 1 input connection B

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

162 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMultiInput(ViSession instrumentID,
ViInt32 channel, ViInt32* input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Multiplexer Input.vi

Visual Basic Representation

GetMultiInput (ByVal instrumentID As Long, _
ByVal channel As Long, _
inputs As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMultiInput (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByRef input As Int32) As Int32

MATLAB MEX Representation

[status input] = AqD1_getMultiInput(instrumentID, channel)

Note: The older form Aq_getMultiInput is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 163

AcqrsD1_getNbrChannels (DEPRECATED)

Purpose

Returns the number of channels on the specified module. See
Acqrs_getNbrChannels.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getNbrChannels(ViSession instrumentID, ViInt32* nbrChannels);

LabVIEW Representation

Please refer to Acqrs_getNbrChannels.

Visual Basic Representation

GetNbrChannels (ByVal instrumentID As Long, _
nbrChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getNbrChannels (ByVal instrumentID As Int32, _
ByRef nbrChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrChannels ViInt32 Number of channels in the specified module

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

164 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getNbrPhysicalInstruments (DEPRECATED)

Purpose

Returns the number of physical Acqiris modules found on the computer. See
Acqrs_getNbrInstruments.

Parameters

Output

Return Value

Discussion

In the case of multiple processes accessing the Agilent Acqiris instruments, this
function will return the number of currently available instruments. If an instrument
has already been initialized in another process, it will not be available unless it has
been suspended via a call to Acqrs_suspendControl.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getNbrPhysicalInstruments(
ViInt32* nbrInstruments);

LabVIEW Representation

Please refer to Acqrs_getNbrInstruments.

Visual Basic Representation

GetNbrPhysicalInstruments (nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getNbrPhysicalInstruments (ByRef nbrInstruments As Int32) As Int32

MATLAB MEX Representation

[status nbrInstrument]= Aq_getNbrPhysicalInstruments()

Name Type Description
nbrInstruments ViInt32 Number of Acqiris modules found on the

computer

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 165

AcqrsD1_getSetupArray

Purpose

Returns an array of configuration parameters. It is useful for Analyzers only.

Parameters

Input

Output

Return Value

AqGateParameters

Discussion

For the object definition refer to AcqrsD1_configSetupArray. If
AcqrsD1_getSetupArray is called without having set the Parameters before, the
default values will be returned.

Note: The driver contains a set of 64 default AqGateParameters, defined as { {0,256}
{256, 256} {512, 256} {768, 256} ... }.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
nbrSetupObj ViInt32 Maximum allowed number of setup objects in the

output.

Name Type Description
setupData ViAddr Pointer to an array for the setup objects

ViAddr resolves to void* in C/C++. The user
must allocate the appropriate array and supply its
address as ‘setupData’

nbrSetupObj-
Returned

ViInt32 Number of setup objects returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
GatePos ViInt32 Start position of the gate
GateLength ViInt32 Length of the gate

166 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getSetupArray(ViSession instrumentID, ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData, ViInt32* nbrSetupObjReturned);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Setup Array.vi

Visual Basic Representation

GetSetupArray (ByVal instrumentID As Long, _
ByVal channel As Long, _
ByVal setupType As Long, _
ByVal nbrSetupObj As Long, _
setupData As Any, _
nbrSetupObjReturned As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getSetupArray (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByVal setupType As Int32, _
 ByVal nbrSetupObj As Int32, _
 ByRef setupData As Int32, _
 ByRef nbrSetupObjReturned As Int32) As Int32

MATLAB MEX Representation

[status setupData nbrSetupObjReturned] = AqD1_getSetupArray(instrumentID,
channel,setupType, nbrSetupObj)

Note: The older form Aq_getSetupArray is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 167

AcqrsD1_getTrigClass

Purpose

Returns the current trigger class control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configTrigClass.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
trigClass ViInt32 = 0 edge trigger

= 1 TV trigger (12-bit-FAMILY External
only)
= 3 OR (10-bit & U1071A-FAMILIES)
= 4 NOR (10-bit & U1071A-FAMILIES)
= 5 AND (10-bit & U1071A-FAMILIES)
= 6 NAND (10-bit & U1071A-FAMILIES)

sourcePattern ViInt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (AS bus operation).
See discussion below.

validatePattern ViInt32 Currently returns "0"
holdType ViInt32 Currently returns "0"
holdoffTime ViReal64 Currently returns "0"
reserved ViReal64 Currently returns "0"

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

168 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigClass(ViSession instrumentID,
ViInt32* trigClass,
ViInt32* sourcePattern, ViInt32* validatePattern,
ViInt32* holdType, ViReal64* holdoffTime, ViReal64* reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Trigger Class.vi

Visual Basic Representation

GetTrigClass (ByVal instrumentID As Long, _
 trigClass As Long, _
 sourcePattern As Long, _
 validatePattern As Long, _
 holdType As Long, _
 holdoffTime As Double, _
 reserved As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigClass (ByVal instrumentID As Int32, _
 ByRef trigClass As Int32, _
 ByRef sourcePattern As Int32, _
 ByRef validatePattern As Int32, _
 ByRef holdType As Int32, _
 ByRef holdoffTime As Double, _
 ByRef reserved As Double) As Int32

MATLAB MEX Representation

[status trigClass sourcePattern validatePattern holdType holdoffTime reserved] =
AqD1_getTrigClass(instrumentID)

Note: The older form Aq_getTrigClass is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 169

AcqrsD1_getTrigSource

Purpose

Returns the current trigger source control parameters for a specified channel.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configTrigSource.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal

sources
= -1..-(Number of ExtTrigSources) for external
 sources
See discussion below.

Name Type Description
trigCoupling ViInt32 = 0 DC

= 1 AC
= 2 HF Reject
= 3 DC, 50 W
= 4 AC, 50 W

trigSlope ViInt32 = 0 Positive
= 1 Negative
= 2 out of Window
= 3 into Window
= 4 HF divide
= 5 Spike Stretcher

trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of
the channel, or in mV if using an External trigger
source. See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when
Window trigger is selected

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

170 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigSource(ViSession instrumentID,
ViInt32 channel, ViInt32* trigCoupling,
ViInt32* trigSlope, ViReal64* trigLevel1, ViReal64* trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Trigger Source.vi

Visual Basic Representation

GetTrigSource (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 trigCoupling As Long, _
 trigSlope As Long, _
 trigLevel1 As Double, _
 trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigSource (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef trigCoupling As Int32, _
 ByRef trigSlope As Int32, _
 ByRef trigLevel1 As Double, _
 ByRef trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status trigCoupling trigSlope trigLevel1 trigLevel2] =
AqD1_getTrigSource(instrumentID, channel)

Note: The older form Aq_getTrigSource is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 171

AcqrsD1_getTrigTV

Purpose

Returns the current TV trigger parameters (12-bit-FAMILY only).

Parameters

Input

Output

Return Value

Discussion

See discussion under AcqrsD1_configTrigTV .

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external

 sources
See discussion below.

Name Type Description
standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)

= 2 525/60/2:1 (NTSC)
field ViInt32 = 1 Field 1 - odd

= 2 Field 2 - even
line ViInt32 = line number, depends on the parameters above:

For 'standard' = 625/50/2:1
= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

172 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigTV (ViSession instrumentID,
ViInt32 channel, ViInt32* standard,
ViInt32* field, ViInt32* line);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Trigger TV.vi

Visual Basic Representation

GetTrigTV (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 standard As Long, _
 field As Long, _
 line AS Long) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigTV (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef standard As Int32, _
 ByRef field As Int32, _
 ByRef line AS Int32) As Int32

MATLAB MEX Representation

[status standard field line] = AqD1_getTrigTV(instrumentID, channel)

Note: The older form Aq_getTrigTV is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 173

AcqrsD1_getVersion (DEPRECATED)

Purpose

Returns version numbers associated with a specified digitizer or current device
driver. See Acqrs_getVersion.

Parameters

Input

Output

Return Value

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent
the major version number, and the lower 2 bytes represent the minor version number.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getVersion(ViSession instrumentID,
ViInt32 versionItem, ViInt32* version);

LabVIEW Representation

Please refer to Acqrs_getVersion.

Visual Basic Representation

GetVersion (ByVal instrumentID As Long, _
 ByVal versionItem As Long, version As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVersion (ByVal instrumentID As Int32, _
 ByVal versionItem As Int32, ByRef version As Int32) As Int32

MATLAB MEX Representation

[status version] = Aq_getVersion(instrumentID, versionItem)

Name Type Description
instrumentID ViSession Instrument identifier
versionItem ViInt32 1 for version of Kernel-Mode Driver

2 for version of EEPROM Common Section
3 for version of EEPROM Digitizer Section
4 for version of CPLD firmware

Name Type Description
version ViInt32 version number of the requested item

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

174 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_getVertical

Purpose

Returns the vertical control parameters for a specified channel in the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configVertical.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input

Name Type Description
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 1 DC, 1 MW

= 2 AC, 1 MW
= 3 DC, 50 W
= 4 AC, 50 W

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 175

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getVertical(ViSession instrumentID,
ViInt32 channel, ViReal64* fullScale,
ViReal64* offset, ViInt32* coupling, ViInt32* bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Vertical Settings.vi

Visual Basic Representation

GetVertical (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 fullScale As Double, _
 offset As Double, _
 coupling As Long, _
 bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVertical (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef fullScale As Double, _
 ByRef offset As Double, _
 ByRef coupling As Int32, _
 ByRef bandwidth As Int32) As Int32

MATLAB MEX Representation

[status fullScale offset coupling bandwidth] = AqD1_getVertical(instrumentID, channel)

Note: The older form Aq_getVertical is deprecated.

Please convert to the newer version.

176 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_init (DEPRECATED)

Purpose

Initializes an instrument. See Acqrs_init .

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for
a detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID
when the initialization string could not be interpreted.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_init(ViRsrc resourceName,
ViBoolean IDQuery, ViBoolean resetDevice,
ViSession* instrumentID);

LabVIEW Representation

Please refer to Acqrs_init .

Visual Basic Representation

Init (ByVal resourceName As String, ByVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_init (ByVal resourceName As String, ByVal IDQuery As Boolean,_
ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID] = Aq_init(instrumentID, IDQuery, resetDevice)

Name Type Description
resourceName ViRsrc ASCII string which identifies the digitizer to be

initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the digitizer after

initialization.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 177

AcqrsD1_InitWithOptions (DEPRECATED)

Purpose

Initializes an instrument with options. See Acqrs_InitWithOptions .

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID
when the initialization string could not be interpreted.

When setting the option simulate to 1 (TRUE), the function
Acqrs_setSimulationOptions should be called first with the appropriate options.

Multiple options can be given; Separate the option=value pairs with ‘,’ characters.

Name Type Description
resourceName ViRsrc ASCII string which identifies the digitizer to be

initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the digitizer after

initialization.
optionsString ViString ASCII string that specifies options.

Syntax: "optionName=bool" where bool is TRUE
(1) or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)
"DMA": use scatter-gather DMA for data transfers
(default 1).
"simulate": initialize a simulated device (default
0).
NOTE: optionsString is case insensitive.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

178 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_InitWithOptions(ViRsrc resourceName,
ViBoolean IDQuery, ViBoolean resetDevice,
ViString optionsString, ViSession* instrumentID);

LabVIEW Representation

Please refer to Acqrs_InitWithOptions .

Visual Basic Representation

InitWithOptions (ByVal resourceName As String, _
 ByVal IDQuery As Boolean, _
 ByVal resetDevice As Boolean, _
 ByVal optionsString As String, _
 instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_InitWithOptions (ByVal resourceName As String, _
 ByVal IDQuery As Boolean, _
 ByVal resetDevice As Boolean, _
 ByVal optionsString As String, _
 ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID]= Aq_initWithOptions(resourceName, IDQuery, resetDevice, optionsString)

Device Driver Function Reference 2

Programmer’s Reference Manual 179

AcqrsD1_logicDeviceIO (DEPRECATED)

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in
on-board logic devices, such as user-programmable FPGAs. It is useful for AC/SC
Analyzers only. See Acqrs_logicDeviceIO.

Parameters

Input

Return Value

Discussion

This function is only useful if the user programmed the on-board logic device
(FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports
internal address auto-incrementation. The following example reads the (32-bit)
contents of register 5 to reg5Value:

 ViStatus status = AcqrsD1_logicDeviceIO(ID, "Block1Dev1", 5, 1, ®5Value, 0, 0);

Note that dataArray must always be supplied as an address, even when writing a
single value.

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to read from or write to.

In the AC210/240 and the SC210/240, this string
must be “Block1Dev1”

registerID ViInt32 Register Number, can typically assume 0 to 127
nbrValues ViInt32 Number of data values to read
dataArray ViInt32 [] User-supplied array of data values
readWrite ViInt32 Direction 0 = read from device, 1 = write to

device
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

180 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_logicDeviceIO(ViSession instrumentID,
ViChar deviceName[], ViInt32 registerID,
ViInt32 nbrValues, ViInt32 dataArray[],
ViInt32 readWrite, ViInt32 flags);

LabVIEW Representation

Please refer to Acqrs_logicDeviceIO.

Visual Basic Representation

LogicDeviceIO (ByVal instrumentID As Long, _
 ByVal deviceName As String, _
 ByVal registerID As Long, _
 ByVal nbrValues As Long, _
 dataArray As Long, _
 ByVal readWrite As Long, _
 ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsD1_logicDeviceIO (ByVal instrumentID As Int32, _
 ByVal deviceName As String, _
 ByVal registerID As Int32, _
 ByVal nbrValues As Int32, _
 ByRef dataArray As Int32, _
 ByVal readWrite As Int32, _
 ByVal modifier As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_logicDeviceIO(instrumentID, deviceName, registerID, nbrValues,
dataArray, readWrite, modifier)

Device Driver Function Reference 2

Programmer’s Reference Manual 181

AcqrsD1_multiInstrAutoDefine

Purpose

Automatically initializes all digitizers and combines as many as possible to
MultiInstruments. Digitizers are only combined if they are physically connected via
AS bus.

Parameters

Input

Output

Return Value

Discussion

This call must be followed by nbrInstruments calls to the functions Acqrs_init or
Acqrs_InitWithOptions to retrieve the instrumentID of the (multi)digitizers.

In the case of multiple processes accessing the Agilent Acqiris instruments, this
function will return the number of currently available instruments. If an instrument
has already been initialized in another process, it will not be available unless it has
been suspended via a call to Acqrs_suspendControl.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization,
for a detailed explanation on the initialization procedure.

Name Type Description
optionsString ViString ASCII string which specifies options.

Currently no options are supported.

Name Type Description
nbrInstruments ViInt32 Number of user-accessible instruments. It also

includes single instruments that don't participate
on the AS bus.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

182 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrAutoDefine(ViString optionsString,
ViInt32* nbrInstruments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) MultiInstrument Auto Define.vi

Visual Basic Representation

MultiInstrAutoDefine (ByVal optionsString As String, _
 nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrAutoDefine (ByVal optionsString As String, _
 ByRef nbrInstruments As Int32) As Int32

MATLAB MEX Representation

[status nbrInstruments] = AqD1_multiInstrAutoDefine(optionsString)

Note: The older form Aq_multiInstrAutoDefine is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 183

AcqrsD1_multiInstrDefine

Purpose

This function defines the combination of a number of digitizers connected by AS bus
into a single MultiInstrument. It is not applicable to AS bus 2 modules.

Parameters

Input

Output

Return Value

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization,
for a detailed explanation on the initialization procedure.

The function returns the error code
ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS if all modules in the
instrumentList are not on the same bus.

It may also return the error codes ACQIRIS_ERROR_NOT_ENOUGH_DEVICES
or ACQIRIS_ERROR_NO_MASTER_DEVICE, when nbrInstruments is < 2 or
the masterID is not one of the values in the instrumentList .

This function should only be used if the choices of the automatic initialization
function AcqrsD1_multiInstrAutoDefine must be overridden. If the function
executes successfully, the instrumentID presented in the instrumentList cannot be
used anymore, since they represent individual digitizers that have become part of the
new MultiInstrument, identified with newly returned instrumentID . Please refer to
the Programmer’s Guide section 3.2.8, Manual Definition of MultiInstruments
for more information.

Name Type Description
instrumentList ViSession [] Array of 'instrumentID' of already initialized

single digitizers
nbrInstruments ViInt32 Number of digitizers in the 'instrumentList'
masterID ViSession 'instrumentID' of master digitizer

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

184 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrDefine(ViSession instrumentList[],
ViInt32 nbrInstruments, ViSession masterID, ViSession* instrumentID);

LabView Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure MultiInstrument Manual Define.vi

Visual Basic Representation

MultiInstrDefine (ByRef instrumentList As Long, _
ByVal nbrInstruments As Long, _
ByVal masterID As Long, _
instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrDefine (ByRef instrumentList As Int32, _
 ByVal nbrInstruments As Int32, _
 ByVal masterID As Int32, _
 ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID] = AqD1_multiInstrDefine(instrumentList, nbrInstruments, masterID)

Note: The older form Aq_multiInstrDefine is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 185

AcqrsD1_multiInstrUndefineAll

Purpose

Undefines all MultiInstruments.

Parameters

Input

Return Value

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization,
for a detailed explanation on the initialization procedure.

This function is almost never needed, except if you want to dynamically redefine
MultiInstruments with the aid of the function AcqrsD1_multiInstrDefine . If the
function executes successfully, the instrumentID of the previously defined
MultiInstruments cannot be used anymore. You must either have remembered the
instrumentID of the single instruments that made up the MultiInstruments, or you
must reestablish all instrumentID s of all digitizers by reinitializing with the code
shown in the Programmer’s Guide section 3.2.1, Identification by Order Found .

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrUndefineAll(ViString optionsString);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure MultiInstrument Undefine.vi

Visual Basic Representation

MultiInstrUndefineAll (ByVal optionsString As String) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrUndefineAll (ByVal optionsString As String) As Long

MATLAB MEX Representation

[status] = AqD1_multiInstrUndefineAll(optionsString)
Note: The older form Aq_multiInstrUndefineAll is deprecated.

Please convert to the newer version.

Name Type Description
optionsString ViString ASCII string which specifies options.

Currently no options are supported.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

186 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_procDone

Purpose

Checks if the on-board data processing has terminated. This routine is for Analyzers
only.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_procDone(ViSession instrumentID,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Process Done.vi

Visual Basic Representation

ProcDone (ByVal instrumentID As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsD1_procDone (ByVal instrumentID As Int32, _
ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done] = AqD1_procDone(instrumentID)

Note: The older form Aq_procDone is deprecated.
Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
done ViBoolean done = VI_TRUE if the processing is terminated

 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 187

AcqrsD1_processData

Purpose

Starts on-board data processing on acquired data in the current bank as soon as the
current acquisition terminates. It can also be used to allow the following acquisition
to be started as soon as possible. This routine is for AP Analyzers only.

Parameters

Input

Return Value

Name Type Description
instrumentID ViSession Instrument identifier
processType ViInt32 Type of processing

0 = no processing (or other Analyzers)
 and for AP101/AP201 ONLY
1 = gated peak detection, extrema mode
2 = gated peak detection, hysteresis mode
3 = interpolated peaks, extrema mode
4 = interpolated peaks, hysteresis mode

 And for AP PeakTDC Analyzers
0 = respect the settings done with
 AcqrsD1_configAvgConfig
1 = gated peak detection with hystersis
2 = gated and interpolated peak detection with
 hysteresis
3 = gated peak detection with 8-point peak region
4 = gated peak detection with 16-point peak region

flags ViInt32 Autoswitch functionality
0 = do (re-)processing in same bank
1 = start the next acquisition in the other bank
2 = switch banks but do not start next acquisition

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

188 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_processData(ViSession instrumentID,
ViInt32 processType, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Process Data.vi

Visual Basic Representation

ProcessData (ByVal instrumentID As Long, _
 ByVal processType As Long, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_processData (ByVal instrumentID As Int32, _
 ByVal processType As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_processData(instrumentID, processType, flags)

Note: The older form Aq_processData is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 189

AcqrsD1_readData

Purpose

Returns all waveform information. The sample data is returned in an array whose
type is specified in the AqReadParameters structure.

Parameters

Input

Output

Return Value

Read Parameters in AqReadParameters

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired

waveform.

Name Type Description
dataArray ViAddr User-allocated waveform destination array.

The array size restrictions are given below.
ViAddr resolves to void* in C/C++.

dataDesc AqDataDescripto
r

Waveform descriptor structure, containing
waveform information that is common to all
segments.

segDescArray ViAddr Segment descriptor structure array, containing data
that is specific for each segment. The size of the
array is defined by nbrSegments and the type by
readMode.If readMode =4 there are no segment
descriptors.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
dataType ViInt32 Type representation of the waveform

0 = 8-bit ((ViInt8) = 1 byte
1 = 16-bit (ViInt16) = 2 bytes
2 = 32-bit (ViInt32/ViUInt32) = 4 bytes
3 = 64-bit (ViReal64) = 8 bytes

190 Programmer’s Reference Manual

2 Device Driver Function Reference

readMode ViInt32 readout mode of the digitizer
0 = standard waveform (single segment only)
1 = image read for sequence waveform
2 = averaged waveform (from an Averager ONLY)

3 = gated waveform (from an AP101/AP201
ONLY)
4 = peaks (from an AP101/AP201 or AP PeakTDC)
5 = short averaged waveform (from an AP
Averager)
6 = shifted short averaged waveform (from an
 AP Averager)
7 = gated data from an SSR or AP PeakTDC
Analyzer
9 = PeakTDC Histogram readout from an Analyzer
10 = PeakTDC Peak region readout from an
 AP Analyzer
11 = raw sequence waveform read

firstSegment ViInt32 Requested first segment number, may assume 0 to
the (number of segments – 1).

nbrSegments ViInt32 Requested number of segments, may assume 1 to
the actual number of segments.

firstSampleInSeg ViInt32 Requested position of first sample to read,
typically 0. May assume 0 to the actual (number of
samples – 1).

nbrSamplesInSeg ViInt32 Requested number of samples, may assume 1 to
the actual number of samples.

segmentOffset ViInt32 ONLY used for readMode = 1 in DIGITIZERS and
nowhere else: Requested offset, in number of
samples, between adjacent segments in the
destination buffer dataArray. Must be ³
nbrSamplesInSeg

dataArraySize ViInt32 Number of bytes in the user-allocated dataArray.
Used for verification / protection.

segDescArraySize ViInt32 Number of bytes in the user-allocated
segDescArray. Used for verification / protection.

flags ViInt32 For AP Averagers if Bit 2 is set the accumulated
data will not be reset after being read, otherwise it
will be.

AcqirisDataTypes.h contains AqReadDataFlags an
enum which encodes the above values.

reserved ViInt32 Reserved for future use, set to 0.
reserved2 ViReal64 Reserved for future use, set to 0.

Device Driver Function Reference 2

Programmer’s Reference Manual 191

Segment Descriptor for Normal Waveforms (readMode = 0,1,3) in
AqSegmentDescriptor

Segment Descriptor for Averaged Waveforms (readMode = 2,5,6) in
 AqSegmentDescriptorAvg

Segment Descriptor for Raw Sequence Waveforms (readMode = 11) in
AqSegmentDescriptorSeqRaw

reserved3 ViReal64 Reserved for future use, set to 0.

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

actualTriggersInSeg ViUInt32 Number of actual triggers acquired in this segment
avgOvfl ViInt32 Acquisition overflow. See discussion below.
avgStatus ViInt32 Average depth and status. See discussion below.
avgMax ViInt32 Max value in the sequence. See discussion below.
flags ViUInt32 The lowest four bits contain the hardware marker

values. For AP Averagers, the correspondence is
Bit 0 (LSB) = P1, Bit 1 = P2
Bit 2 = I/O A Bit 3 = I/O B
The marker is set at the last trigger, in the first
round of the acquisition of the segment.

reserved ViInt32 Reserved for future use

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

indexFirstPoint ViUInt32 Pointer to first sample of this segment
actualSegmentSize ViUInt32 Actual segment size, for the size of the circular

buffer
reserved ViInt32 Reserved for future use

192 Programmer’s Reference Manual

2 Device Driver Function Reference

Data Descriptor in AqDataDescriptor

Discussion

All structures used in this function can be found in the header file
AcqirisDataTypes.h. This file also contains enum definitions for the allowed values
of the members of the AqReadParameters structure.

The type of the dataArray is determined from the AqReadParameters struct entry
dataType.

Remember to set all values of the AqReadParameters structure, including the
reserved values.

The following dataType and readMode combinations are supported:

Name Type Description
returnedSamplesPerS
eg

ViInt32 Total number of data samples actually returned.
DataArray[indexFirstPoint]…
DataArray[indexFirstPoint+
returnedSamplesPerSeg-1]

indexFirstPoint ViInt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always
be in the range [0...31]. It is not an offset in bytes
but rather and index in units of samples that may
occupy more than one byte.

sampTime ViReal64 Sampling interval in seconds.
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
returnedSegments ViInt32 Number of segments
nbrAvgWforms ViInt32 Number of averaged waveforms (nominal) in

segment
actualTriggersInAcq
Lo
actualTriggersInAcq
Hi

ViUInt32
ViUInt32

Low and high part of the 64-bit count of the
number of triggers taken for the entire acquisition

actualDataSize ViUInt32 Actual length in bytes used at dataArray. This
value is only returned for SSR and PeakTDC
Analyzers.

reserved2 ViInt32 Reserved for future use
reserved3 ViReal64 Reserved for future use

0 =
standard

1 =
image

2 =
averaged

3 =
gated

4 =
peaks

0 = Int8 8,10 8,10 - APX01 -

1 = Int16 10,12 10,12 - - -

Device Driver Function Reference 2

Programmer’s Reference Manual 193

 In this table

• ‘X’ means that the functionality is available depending on the option
but independent of the model,

• '8' means that the functionality is available for 8-bit Digitizers and
AP units in the digitizer mode,

• '10' means that it is available for the 10-bit Digitizers,

• '12' means that it is available for the 12-bit Digitizers.

It must be remembered that 12-bit digitizers generate 12 or 13-bit data which will be
transferred as 2 bytes with the data shifted so that the MSB of the data becomes the
MSB of the 16-bit word, thus preserving the sign information. The vGain value is
therefore not the gain of the ADC in volts/LSB but rather the volts/LSB of the 16-bit
word.

10-bit digitizers generate 12-bit data which can be transferred in either of 2 ways

2 bytes with the data shifted so that the MSB of the data becomes the MSB of the
16-bit word, thus preserving the sign information

1 byte with the 8-bit data of the most significant bits of the ADC value. Here the
lowest two bits will be lost (truncated). The advantage is that the amount of data to be
transferred has been cut by a factor of 2.

Real64 readout of 10-bit digitizers is based on 16-bit transfer of the data,

The value in Volts of any integer data point data in the returned dataArray for a
digitizer can be computed with the formula:

V = vGain * data – vOffset

2 = Int32 - - X - AP
PeakTDC

3 =
Real64

X X X - APX01

5 =
 short
averaged

6 =
shifted
 short
 averaged

7 =
SSR

9 =
Histogra
m

10 =
peak
region

11 =
sequence
raw

0 = Int8 - - X 8,10
1 = Int16 AP AVG AP AVG - PeakTDC 10,12
2 = Int32 - - - PeakTDC AP

PeakTDC

3 =
Real64

AP AVG AP AVG -

194 Programmer’s Reference Manual

2 Device Driver Function Reference

Except in the case of AP Analyzers, the data points for dataType = 3 are in Volts and
no conversion is needed. For AP Analyzers the data points are in units of the LSB of
the ADC and must be converted using the formula above.

For readMode = 0 and dataType ≤ 1, indexFirstPoint must be used for the correct
identification of the first data point in the dataArray . With the U1084A,
indexFirstPoint must be used for all readModes and dataTypes.

In general, it is recommended to always take indexFirstPoint into account, as future
products may use this field more often to compensate for stricter buffer alignment
requirements.

The 3 "averaged" modes correspond to:

2 – 24-bit or 32-bit data read as such into either Int32 32-bit integers or converted
into volts for Real64,

5 – 16-bit data read of the least significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows,

6 – 16-bit data read of the most significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows.

It should also be noted that the interpretation of averager results was discussed in the
Programmer’s Guide section 3.10.5, Reading an Averaged Waveform from an
Averager and 3.10.6, Reading a RT Add/Subtract Averaged Waveform from an
Averager.

If readMode is set to gated, the nbrSamplesInSeg is set to the sum of the gate
lengths.

The rules for the allocation of memory for the dataArray are as follows:

For digitizers (or other modules used as such)

with readMode = 0 and dataType = 0, the array size in bytes must be at least
(nbrSamplesInSeg+32).

with readMode = 0 and dataType = 1, the array size in words

must be at least (nbrSamplesInSeg+32).

with readMode = 0 and dataType = 3, the array size in bytes must be at least

max(40,8*nbrSamplesInSeg) for 8-bit digitizers and max(88,8*nbrSamplesInSeg)
for 10-bit and 12-bit digitizers.

with readMode = 1 or readMode = 11 the waveform destination array dataArray
must not only allocate enough space to hold the requested data, but also some
additional space. This function achieves a higher transfer speed by simply
transferring an image of the digitizer memory to the CPU memory, and then
reordering all circular segment buffers into linear arrays. Since allocating a
temporary buffer for the memory image is time consuming, the user-allocated
destination buffer is also used as a temporary storage for the memory image. The

Device Driver Function Reference 2

Programmer’s Reference Manual 195

rule for the minimum storage space to allocate with waveformArray is discussed
in the Programmer’s Guide section 3.10.2, Reading Sequences of Waveforms.

For AP Averagers

with readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

with readMode = 2, 5 or 6 are allowed and the size

must be at least nbrSamplesInSeg* nbrSegments * size_of_dataType

For U1084A Averagers

with readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

only readMode = 2 is allowed and the buffer size in bytes must be at least
(nbrSamplesInSeg * nbrSegments)* size_of_dataType + 16

For AP analyzers

readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

readMode = 2 cannot be used

with readMode = 3 the array size must be at least the sum of all gate lengths.

with readMode = 4 in the APx01 analyzers the array size must be
 4*sizeof(double) * number of gates

with readMode = 4 in the PeakTDC analyzers the array size must be
 8 * number of peaks

with readMode = 7 in the PeakTDC or SSR analyzers the array size must be
 nbrSegments * (16 + nbrSamplesInSeg) for the simple case
of all the data in a single gate.

For other cases please see the Programmer’s Guide section 3.10.7,
Reading SSR Analyzer Waveforms, for a detailed explanation.

with readMode = 9 the array size must be at least
 2**HistoRes*nbrSamplesInSeg*nbrSegments*size_of_dat
aType if a segmented histogram is used and where
 HistoRes is the value used in the call to Acqrs_configAvgConfig with
 "TdcHistogramHorzRes".

 nbrSegments is either 1 or the number of segments if the value used in the call
to Acqrs_configAvgConfig with "TdcHistogramMode" is 1

 size_of_dataType = 2*(1+HistoDepth), where HistoDepth is the value used in
the call to Acqrs_configAvgConfig with "TdcHistogramDepth"

for all other cases, its size, in bytes, must be at least
 nbrSamplesInSeg* nbrSegments*size_of_dataType

For configuring gate parameters see the User Manual: Family of Analyzers

196 Programmer’s Reference Manual

2 Device Driver Function Reference

For U1084A PeakTDC analyzers

readMode = 0 can be used to read the last trace which contributed to the
histogram. The rules are the same as for digitizer mode. This feature is intended
solely as a convenience for debugging and display purposes.

Use readMode = 9 to read the histogram. The data array size must be at least
 2**HistoRes*nbrSamplesInSeg*nbrSegments*size_of_dataType + 16
if a segmented histogram is used, where HistoRes is the value used in the call to
Acqrs_configAvgConfig with "TdcHistogramHorzRes".

The value of returnedSamplesPerSeg for readMode = 7 is not useable and
therefore set to 0.

If used the segment descriptor array segDesc[] must always be allocated with a length
that corresponds to the total number of segments requested with nbrSegments in
AqReadParameters. The first requested segment is therefore deposited in
SegDesc[0]. The segment descriptor array must also be allocated with the correct
structure type that depends on the readMode. If not used a Null pointer can be passed
to the function. There are no segment descriptors for readMode = 4, 7, 9, and 10.

The returned segment descriptor values timeStampLo and timeStampHi are
respectively the low and high parts of the 64-bit trigger timestamp, in units of
picoseconds. The timestamp is the trigger time with respect to an arbitrary time origin
(usually the start-time of the acquisition except for the 10-bit digitizers), which is
intended for the computation of time differences between segments of a Sequence
acquisition. Please refer to the Programmer’s Guide section 3.15, Timestamps, for
a detailed explanation.

The returned segment descriptor value horPos is the horizontal position, for the
segment, of the first (nominal) data point with respect to the origin of the nominal
trigger delay in seconds. Since the first data point is BEFORE the origin, this number
will be in the range [-sampTime, 0]. Refer to the Programmer’s Guide section 3.12,
Trigger Delay and Horizontal Waveform Position, for a detailed discussion of the
value delayTime. For Averaged Waveforms, the value of horPos will always be 0.

avgOvfl, avgStatus and avgMax will apply to Signal Averagers only. The features
that they support have not yet been implemented.

The value of segmentOffset must be nbrSamplesInSeg. The waveforms are thus
transferred sequentially into a single linear buffer, with 'holes' of length
(segmentOffset – nbrSamplesInSeg) between them. Such 'holes' could be used for
depositing additional segment-specific information before storing the entire sequence
as a single array to disk. If you specify firstSegment > 0, you don’t have to allocate
any buffer space for waveforms that are not read, i.e. waveformArray[0]
corresponds to the first sample of the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesInSeg = segmentOffset = 1500.
Then with nbrSegments = 80 and nbrSamplesNom = 1000, since the
currentSegmentPad = 408, you would have to allocate at least 1408 * (80 + 1) =
114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently
rather than dynamically, in order to avoid system overheads for buffer
allocation/deallocation.

Device Driver Function Reference 2

Programmer’s Reference Manual 197

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readData(ViSession instrumentID,
ViInt32 channel, AqReadParameters* readPar,
ViAddr dataArray, AqDataDescriptor* descriptor, ViAddr segDesc);

LabVIEW Representations

Acqiris Dx.lvlib: (or Aq Dx) Read Multi-Segments.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, I16 or
DBL.

It is meant for the readout of multiple segments with readMode = 1.

Acqiris Dx.lvlib: (or Aq Dx) Read Single Segment.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, I16.

It is meant for the readout of a single segment with readMode = 0.

Acqiris Dx.lvlib: (or Aq Dx) Read Averager Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an averager with readMode = 2.

Acqiris Dx.lvlib: (or Aq Dx) Read Gated Data.vi
It is meant for the readout of an analyzer with readMode = 3.

198 Programmer’s Reference Manual

2 Device Driver Function Reference

Acqiris Dx.lvlib: (or Aq Dx) Read Peaks Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an analyzer with readMode = 4.

Acqiris Dx.lvlib: (or Aq Dx) Read SSR Data.vi
It is meant for the readout of an analyzer with readMode = 7.

Acqiris Dx.lvlib: (or Aq Dx) Read Histogram Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I16 or I32

It is meant for the readout of an PeakTDC analyzer with readMode = 9.

Visual Basic Representation

ReadData (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 readPar As AqReadParameters, _
 dataArray As Any, _
 dataDesc As AqDataDescriptor, _
 segDescArray As Any) As Long

Note: For readPar.readMode = 1 you must use dataType=3;

Visual Basic .NET Representation

AcqrsD1_readData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByRef dataArray As DATATYPE, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptor) As Int32

Where DATATYPE can be either Int8, Int16, or Double

Note: For readPar.readMode = 1 you must use dataType=3;

Device Driver Function Reference 2

Programmer’s Reference Manual 199

or

AcqrsD1_readData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByRef dataArray As DATATYPEAVG, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptorAvg) As Int32

Where DATATYPEAVG can be either Int16, Int32, or Double

MATLAB MEX Representation

[status dataDesc segDescArray dataArray] = AqD1_readData(instrumentID, channel, readPar)

Note: The older form Aq_readData is deprecated.

Please convert to the newer version.

200 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_readFCounter

Purpose

Returns the result of a frequency counter measurement

Parameters

Input

Output

Return Value

Discussion

The result must be interpreted as a function of the effected measurement ‘type’:

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
result ViReal64 Result of measurement

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Measurement Type Units
 0 Frequency Hz
 1 Period Sec
 2 Totalize by Time Counts
 3 Totalize by Gate Counts

Device Driver Function Reference 2

Programmer’s Reference Manual 201

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readFCounter(ViSession instrumentID, ViReal64* result);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Read FCounter.vi

Visual Basic Representation

ReadFCounter (ByVal instrumentID As Long, result As Double) As Long

Visual Basic .NET Representation

AcqrsD1_readFCounter (ByVal instrumentID As Int32, _
 ByRef result As Double) As Int32

MATLAB MEX Representation

[status result] = AqD1_readFCounter(instrumentID)

Note: The older form Aq_readFCounter is deprecated.

Please convert to the newer version.

202 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_reportNbrAcquiredSegments

Purpose

Returns the number of segments already acquired for a digitizer. For averagers (but
not AP100 or AP200) it will give the number of triggers already accepted for the
current acquisition. In the case of analyzers it will return the value 1 at the end of the
acquisition and is therefore not of much use.

Parameters

Input

Output

Return Value

Discussion

Can be called after an acquisition, in order to obtain the number of segments/triggers
actually acquired (until AcqrsD1_stopAcquisition was called).

As needed the result should be interpreted as a ViUInt32.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrSegments ViInt32 Number of segments already acquired

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

NOTE For a digitizer, calling this function while an acquisition is active, in
order to follow the progress of a Sequence acquisition, is dangerous
and must be avoided.

Device Driver Function Reference 2

Programmer’s Reference Manual 203

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_reportNbrAcquiredSegments(ViSession instrumentID,
ViInt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Number of Acquired Segments.vi

Visual Basic Representation

ReportNbrAcquiredSegments (ByVal instrumentID As Long, _
 nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reportNbrAcquiredSegments (ByVal instrumentID As Int32, _
ByRef nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSegments] = Aqd1_reportNbrAcquiredSegments(instrumentID)
Note: The older form Aq_reportNbrAcquiredSegments is deprecated.

Please convert to the newer version.

204 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_reset (DEPRECATED)

Purpose

Resets an instrument. See Acqrs_reset

Parameters

Input

Return Value

Discussion

There is no known situation where this action is to be recommended.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_reset(ViSession instrumentID);

LabVIEW Representation

Please refer to Acqrs_reset.

Visual Basic Representation

Reset (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reset (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_reset(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 205

AcqrsD1_resetDigitizerMemory

Purpose

Resets the digitizer memory to a known default state.

Parameters

Input

Return Value

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values 0xaa,
0x55, 0x00 and 0xff. This functionality is mostly intended for use with battery
backed-up memories.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_resetDigitizerMemory(ViSession instrumentID);

LabVIEW Representation

Please refer to Acqrs_resetMemory.

Visual Basic Representation

ResetDigitizerMemory (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_resetDigitizerMemory (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_resetDigitizerMemory(instrumentID)

Note: The older form Aq_resetDigitizerMemory is deprecated.

Please convert to the newer version or Aq_resetMemory.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

206 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_restoreInternalRegisters

Purpose

Restores some internal registers of an instrument.
Only needed after power-up of a digitizer with the battery back-up option.

Parameters

Input

Return Value

Discussion

The normal startup sequence destroys the contents of the Acqiris digitizer memories.
This function, together with a specific sequence of other function calls, prevents this
from occurring in digitizers with battery backed-up memories.

Please refer to the Programmer’s Guide section 3.19, Readout of Battery
Backed-up Memories, for a detailed description of the required initialization
sequence to read battery backed-up waveforms.

Name Type Description
instrumentID ViSession Instrument identifier
delayOffset ViReal64 Global delay offset, should be retrieved with

Acqrs_getInstrumentInfo (…, “DelayOffset”, ..)
before power-off.
If not known, use the value –20.0e-9

delayScale ViReal64 Global delay scale, should be retrieved with
Acqrs_getInstrumentInfo (…, “DelayScale”, ..)
before power-off.
If not known, use the value 5.0e-12

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 207

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_restoreInternalRegisters(ViSession instrumentID,
ViReal64 delayOffset, ViReal64 delayScale);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Restore Internal Registers.vi

Visual Basic Representation

RestoreInternalRegisters (ByVal instrumentID As Long,
 ByVal delayOffset As Double,
 ByVal delayScale As Double) As Long

Visual Basic .NET Representation

AcqrsD1_restoreInternalRegisters (ByVal instrumentID As Int32,
 ByVal delayOffset As Double,
 ByVal delayScale As Double) As Int32

MATLAB MEX Representation

[status] = AqD1_restoreInternalRegisters(instrumentID, delayOffset, delayScale)

Note: The older form Aq_restoreInternalRegisters is deprecated.

Please convert to the newer version.

208 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_setAttributeString (DEPRECATED)

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

See Acqrs_setAttributeString .

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setAttributeString(ViSession instrumentID,
ViInt32 channel, ViConstString name,
ViConstString value);

LabVIEW Representation

Please refer to Acqrs_setAttributeString .

Visual Basic Representation

Please refer to Acqrs_setAttributeString .

Visual Basic .NET Representation

Please refer to Acqrs_setAttributeString .

MATLAB MEX Representation

Please refer to Acqrs_setAttributeString .

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
name ViConstString ASCII string that specifies options

“odlTxBitRate” is currently the only one used
value ViConstString For “odlTxBitRate” can have values like

“2.5G”,”2.125G”, or “1.0625G”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 209

AcqrsD1_setLEDColor (DEPRECATED)

Purpose

Sets the front panel LED to the desired color. See Acqrs_setLEDColor.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setLEDColor(ViSession instrumentID, ViInt32 color);

LabVIEW Representation

Please refer to Acqrs_setLEDColor.

Visual Basic Representation

SetLEDColor (ByVal instrumentID As Long, _
 ByVal color As Long) As Long

Visual Basic .NET Representation

AcqrsD1_setLEDColor (ByVal instrumentID As Int32, _
 ByVal color As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_setLEDColor(instrumentID, color)

Name Type Description
instrumentID ViSession Instrument identifier
color ViInt32 0 = OFF (return to normal acquisition status

 indicator)
1 = Green
2 = Red
3 = Yellow

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

210 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_setSimulationOptions (DEPRECATED)

Purpose

Sets one or several options which will be used by the function
Acqrs_InitWithOptions , provided that the optionsString supplied to
Acqrs_InitWithOptions contains the string "simulate=TRUE". See
Acqrs_setSimulationOptions.

Parameters

Input

Return Value

Discussion

See the Programmer’s Guide section 3.2.10, Simulated Devices, for details on
simulation. A string of the form “M8M” is used to set an 8 Mbyte simulated memory.
The simulation options are reset to none by setting simOptionString to an empty
string "".

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setSimulationOptions(ViString simOptionString);

LabVIEW Representation

Use Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

Visual Basic Representation

SetSimulationOptions (ByVal simOptionString As String) As Long

Visual Basic .NET Representation

AcqrsD1_setSimulationOptions (ByVal simOptionString As String) As Int32

MATLAB MEX Representation

[status] = Aq_setSimulationOptions(simOptionsString)

Name Type Description
simOptionString ViString String listing the desired simulation options. See

discussion below.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 211

AcqrsD1_stopAcquisition

Purpose

Stops the acquisition.

Parameters

Input

Return Value

Discussion

This function will stop the acquisition and not return until this has been
accomplished. The data is not guaranteed to be valid. To obtain valid data after
"manually" stopping the acquisition (e.g. timeout waiting for a trigger), one should
use the function AcqrsD1_forceTrig to generate a "software" (or "manual") trigger,
and then continue polling for the end of the acquisition with AcqrsD1_acqDone.
This will ensure correct completion of the acquisition.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_stopAcquisition(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Acquisition.vi

Visual Basic Representation

StopAcquisition (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopAcquisition (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_stopAcquisition(instrumentID)

Note: The older form Aq_stopAcquisition is deprecated.

Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

212 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsD1_stopProcessing

Purpose

Stops on-board data processing. This routine is for Analyzers only.

Parameters

Input

Return Value

Discussion

This function will stop the on-board data processing immediately. The output data is
not guaranteed to be valid.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_stopProcessing(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Processing.vi

Visual Basic Representation

StopProcessing (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopProcessing (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_stopProcessing(instrumentID)

Note: The older form Aq_stopProcessing is deprecated.

Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 213

AcqrsD1_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters

Input

Return Value

Discussion

This function will return only after the acquisition has terminated or when the
requested timeout has elapsed, whichever comes first. For protection, the timeout is
clipped to a maximum value of 10 seconds. If a larger timeout is needed, call this
function repeatedly.

While waiting for the acquisition to terminate, the calling thread is put into 'idle',
permitting other threads or processes to fully use the CPU.

If a channel or trigger overload was detected, the returned status is always
ACQIRIS_ERROR_OVERLOAD. Else, if the acquisition times out, the returned
status is ACQIRIS_ERROR_ACQ_TIMEOUT, in which case you should use either
AcqrsD1_stopAcquisition or AcqrsD1_forceTrig to stop the acquisition.
Otherwise, the returned status is VI_SUCCESS.

Name Type Description
instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

214 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfAcquisition (ViSession instrumentID, ViInt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Wait For End Of Acquisition.vi

Visual Basic Representation

WaitForEndOfAcquisition (ByVal instrumentID As Long, _
 ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsD1_waitForEndOfAcquisition (ByVal instrumentID As Int32, _
 ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_waitForEndOfAcquisition(instrumentID, timeOut)

Note: The older form Aq_waitForEndOfAcquisition is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 215

AcqrsD1_waitForEndOfProcessing

Purpose

Waits for the end of on-board data processing. . This routine is for Analyzers only.

Parameters

Input

Return Value

Discussion

This function will return only after the on-board processing has terminated or when
the requested timeout has elapsed, whichever comes first. For protection, the timeout
is clipped to a maximum value of 10 seconds. If a larger timeout is needed, call this
function repeatedly.

While waiting for the processing to terminate, the calling thread is put into 'idle',
permitting other threads or processes to fully use the CPU.

If the processing times out, the returned status is
ACQIRIS_ERROR_PROC_TIMEOUT, in which case you should use
AcqrsD1_stopProcessing to stop the processing. Otherwise, the returned status is
VI_SUCCESS.

Name Type Description
instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

216 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfProcessing(ViSession instrumentID, ViInt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Wait For End Of Processing.vi

Visual Basic Representation

WaitForEndOfProcessing (ByVal instrumentID As Long, _
 ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsD1_waitForEndOfProcessing (ByVal instrumentID As Int32, _
 ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_waitForEndOfProcessing(instrumentID, timeOut)

Note: The older form Aq_waitForEndOfProcessing is deprecated.

Please convert to the newer version.

Device Driver Function Reference 2

Programmer’s Reference Manual 217

 AcqrsT3_acqDone

Purpose

Checks if the acquisition has terminated.

Parameters

Input

Output

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_acqDone(ViSession instrumentID, ViBoolean* done);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Acquisition Status.vi

Visual Basic .NET Representation

AcqrsT3_acqDone (ByVal instrumentID As Int32, ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done]= AqT3_acqDone(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
done ViBoolean done = VI_TRUE if the acquisition is terminated

 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

218 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_acquire

Purpose

Starts an acquisition.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_acquire(ViSession instrumentID);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Start Acquisition.vi

Visual Basic .NET Representation

AcqrsT3_ acquire (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status done]= AqT3_acquire(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 219

AcqrsT3_configAcqConditions

Purpose

Configures parameters affecting the entire acquisition.

Parameters

Input

Return Value

Discussion

The timeout value of 0.0 means no timeout.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configAcqConditions(ViSession instrumentID,
ViReal64 timeout, ViInt32 flags, ViInt32 reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure Acquisition Conditions.vi

Visual Basic .NET Representation

AcqrsT3_configAcqConditions(ByVal instrumentID As Int32, _
ByVal timeout As Double, _
ByVal flags As Int32, _
ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AqT3_configAcqConditions(instrumentID, timeout, flags, reserved)

Name Type Description
instrumentID ViSession Instrument identifier
timeout ViReal64 Timeout in seconds
flags ViInt32 The LSB (bit 0)

= 0 start timeout counter on Arm
= 1 start timeout counter on first Common hit

reserved ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

220 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_configChannel

Purpose

Configures parameters for defining timing events on each channel.

Parameters

Input

Return Value

Discussion

Nchan can be found from a call to Acqrs_getNbrChannels.

The common channel cannot be inactivated.

The veto channel cannot be inactivated nor can the slope be changed. Mode has no
function.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = 1…Nchan or

 −1 for the common channel
 −2 for the veto

mode ViInt32 The LSB (bit 0) = 0 positive slope
 = 1 negative slope
 Bit 1 = 0 normal events
 = 1 pulse events with pulse type defined by
 the LSB (TC890 ONLY)
 The MSB (bit31) = 0 active channel
 = 1 inactive channel

level ViReal64 Threshold value in Volts.
reserved ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 221

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configChannel(ViSession instrumentID,
ViInt32 channel, ViInt32 mode, ViReal64 level, ViInt32 reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure Channel.vi

Visual Basic .NET Representation

AcqrsT3_configChannel(ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByVal mode As Int32, _

 ByVal level As Double, _
ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AqT3_configChannel(instrumentID, channel, mode, level, reserved)

222 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_configControlIO

Purpose

Configures the auxiliary I/O connectors.

Parameters

Input

Accepted Values of signal

Name Type Description
instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel I/O Aux 1
 2 = Front Panel I/O Aux 2
13 = Front Panel Veto Input

signal ViInt32 See below
qualifier1 ViInt32 If the LSB (bit0) is set to 1 and the connector is

being used for an input signal, forces 50 Ω
termination.
If signal = 34 then
 the LSB (bit0) signal[0] = 1 forces 50 Ω
termination
and the signals shape is determined by
 signal[8:15] low-level width in 10 ns increments
 starting at 10 ns (for the value 0)
 signal[16:23]high-level width in 10 ns
increments
 starting at 10 ns (for the value 0)

qualifier2 ViReal64 Currently unused, set to “0.0”

Connector Type Possible Values of signal
Front Panel Veto Input Veto:

 1 = Veto
 2 = Switch Veto - TC890
 3 = Inverted Veto
 4 = Inverted Switch Veto - TC890

Device Driver Function Reference 2

Programmer’s Reference Manual 223

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configControlIO (ViSession instrumentID,
ViInt32 connector, ViInt32 signal,
ViInt32 qualifier1, ViReal64 qualifier2);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure Control I/O.vi

Visual Basic .NET Representation

AcqrsT3_configControlIO (ByVal instrumentID As Int32, _
ByVal connector As Int32, ByVal signal As Int32, _
ByVal qualifier1 As Int32, ByVal qualifier2 As Double) As Int32

MATLAB MEX Representation

[status]= AqT3_configControlIO(instrumentID, connector, signal, qualifier1, qualifier2)

Connector Type Possible Values of signal
Front Panel Aux I/O 0 = Disable

Inputs:

Outputs:

TC840/TC842 TC890
16 = arm
17 = stop

1 = Bank switch
2 = Marker

TC840/TC842 TC890
48 = READY 32 = GTLP low level

33 = GTLP high level
34 = GTLP Repetetive Pulse

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

224 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_configMemorySwitch

Purpose

Configures the memory bank switch triggering events. TC890 only.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configMemorySwitch (ViSession instrumentID,
ViInt32 switchEnable, ViInt32 countEvent,
ViInt32 sizeMemory, ViInt32 reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure MemorySwitch.vi

Name Type Description
instrumentID ViSession Instrument identifier
switchEnable ViInt32 This is a bitfield to identify the unique event that

can cause the switch:
= 1 switch on Aux I/O (use
 AcqrsT3_configControlIO to enable
signal)
= 2 switch on count of events on common channel
= 4 switch on memory size limit

countEvent ViInt32 number of events on the common channel
sizeMemory ViInt32 memory size limit to use
reserved ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 225

Visual Basic .NET Representation

AcqrsT3_configMemorySwitch (ByVal instrumentID As Int32, _
ByVal switchEnable As Int32, ByVal countEvent As Int32, _

 ByVal sizeMemory As Int32, ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status] = AqT3_configMemorySwitch(instrumentID, switchEnable, countEvent, sizeMemory,
reserved)

226 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_configMode

Purpose

Configures parameters for the operating mode of the instrument.

Parameters

Input

Return Value

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configMode (ViSession instrumentID,
ViInt32 mode, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure Mode.vi

Visual Basic .NET Representation

AcqrsT3_configMode(ByVal instrumentID As Int32, _
ByVal mode As Int32, _
ByVal modifier As Int32, _
ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqT3_configMode(instrumentID, mode, modifier, flags)

Name Type Description
instrumentID ViSession Instrument identifier
mode ViInt32 = 1 standard acquisition - the only TC840 and

TC842 mode
= 2 Time of Flight acquisition - the only TC890
mode

modifier ViInt32 For TC840 and TC842:
= 0 single acquisition
= 1 multiple acquisitions

flags ViInt32 = 0 internal reference clock
= 1 external reference clock
= 2 enable test signal

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 227

AcqrsT3_forceTrig

Purpose

Generate a COMMON hit for a TC890.

Parameters

Input

Return Value

Discussion

This function can be used to either

• measure times of multiple hits on the same or different channels,
relative to a single origin. In this case, no signal would be connected
on the 'COMMON' channel. Instead, AcqrsT3_forceTrig would be
called directly after AcqrsT3_acquire to start the TC's real time
counter. Subsequent hits on the other channels would then be
measured relative to the moment 'forceTrig' was called.

• trigger a bank switch in 'Switch on event count' mode, by inserting
additional 'dummy' COMMON hits after the last 'real' COMMON hit
until the bank switch occurs.

Name Type Description
instrumentID ViSession Instrument identifier
forceTrigType ViInt32 Currently unused, set to “0”
modifier ViInt32 Currently unused, set to “0”
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

228 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_forceTrig(ViSession instrumentID,
ViInt32 forceTrigType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Force Trigger.vi

Visual Basic .NET Representation

AcqrsT3_forceTrig (ByVal instrumentID As Int32, _
ByVal forceTrigType As Int32, _
ByVal modifier As Int32, _

 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqT3_forceTrig(instrumentID, forceTrigType, modifier, flags)

Device Driver Function Reference 2

Programmer’s Reference Manual 229

AcqrsT3_getAcqConditions

Purpose

Returns the current acquisition parameters of the Time-to-Digital Converter.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsT3_configAcqConditions.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_getAcqConditions (ViSession instrumentID,
ViReal64* timeout, ViInt32* flags, ViInt32* reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Acquisition Conditions.vi

Visual Basic .NET Representation

AcqrsT3_getAcqConditions (ByVal instrumentID As Int32, _
ByRef timeout As Double, _
ByRef flags As Int32, _
ByRef reserved As Int32) As Int32

MATLAB MEX Representation

[status timeoutP flagsP reservedP]= AqT3_getAcqConditions(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
timeout ViReal64 Timeout in seconds
flags ViInt32 The LSB (bit 0) = 0 start timeout counter on Arm

 = 1 start timeout counter on first
 Common hit

reserved ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

230 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_getChannel

Purpose

Returns the current channel parameters of the Time-to-Digital Converter.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsT3_configChannel.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1…Nchan or

 −1 for the common channel
 −2 for the veto

Name Type Description
mode ViInt32 The LSB (bit 0) = 0 positive slope

 = 1 negative slope
Bit 1 = 0 normal events
 = 1 pulse events with pulse type defined by
 the LSB (TC890 ONLY)
 The MSB (bit31) = 0 active channel
 = 1 inactive channel

level ViReal64 Threshold value in Volts.
reserved ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 231

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_getChannel (ViSession instrumentID,
ViInt32 channel, ViInt32* mode, ViReal64* level, ViInt32* reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Channel.vi

Visual Basic .NET Representation

AcqrsT3_getChannel (ByVal instrumentID As Int32, _
ByValRef channel As Int32, _
ByRef mode As Int32, _
ByRef level As Double, _
ByRef reserved As Int32) As Int32

MATLAB MEX Representation

[status modeP levelP reservedP]= AqT3_getChannel(instrumentID, channel)

232 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_getControlIO

Purpose

Returns the current configuration of the auxiliary I/O connectors.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsT3_configControlIO .

Name Type Description
instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel Aux I/O 1
 2 = Front Panel Aux I/O 2

Name Type Description
signal ViInt32 See remarks under AcqrsT3_configControlIO .
qualifier1 ViInt32 If the LSB (bit0) is set to 1 forces 50 Ω

termination for the connector
qualifier2 ViReal64 Currently unused

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 233

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_getControlIO (ViSession instrumentID,
ViInt32 channel, ViInt32* signal,
ViInt32* qualiflier1, ViReal64* qualiflier2);

LabVIEW Representation

AcqrsT3 Query ControlIO.vi

Visual Basic .NET Representation

AcqrsT3_getControlIO (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _

ByRef signal As Int32, _
ByRef qualiflier1 As Int32, _
ByRef qualiflier2 As Double) As Int32

MATLAB MEX Representation

[status signal qualifier1 qualifier2]= AqT3_getControlIO(instrumentID, connector)

234 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_getMemorySwitch

Purpose

Returns the current channel parameters of the memory bank switch operation.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsT3_configMemorySwitch.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
switchEnable ViInt32 This is a bitfield to identify the enabled events

 = 1 switch on I/O Aux
 = 2 switch on count of events on common
channel
 = 4 switch on memory size limit

countEvent ViInt32 number of events on the common channel
sizeMemory ViInt32 memory size limit to use
reserved ViInt32 Currently unused

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 235

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_getMemorySwitch (ViSession instrumentID,
ViInt32* switchEnable, ViInt32* countEvent,
ViInt32* sizeMemory, ViInt32* reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query MemorySwitch.vi

Visual Basic .NET Representation

AcqrsT3_getMemorySwitch (ByVal instrumentID As Int32, _
ByRef switchEnable As Int32, _
ByRef countEvent As Int32, _
ByRef sizeMemory As Int32, _
ByRef reserved As Int32) As Int32

MATLAB MEX Representation

[status switchEnableP countEventP sizeMemoryP reservedP]=
AqT3_getMemorySwitch(instrumentID)

236 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_getMode

Purpose

Returns the current operational mode of the Time-to-Digital Converter.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsT3_configMode.

.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
mode ViInt32 = 1 standard acquisition TC840 and TC842

= 2 Time of Flight acquisition TC890
modifier ViInt32 For TC840 and TC842

= 0 single hit
= 1 multiple hits

flags ViInt32 = 0 internal reference clock
= 1 external reference clock

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Device Driver Function Reference 2

Programmer’s Reference Manual 237

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_getMode (ViSession instrumentID,
ViInt32* mode, ViInt32* modifier, ViInt32* flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Mode.vi

Visual Basic .NET Representation

AcqrsT3_getMode (ByVal instrumentID As Int32, _
ByRef mode As Int32, _
ByRef modifier As Int32, _
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status mode modifiers flags] = AqT3_getMode(instrumentID)

238 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_readData

Purpose

Returns all Time-to-Digital Converter information. The sample data is returned in a
model dependent form and as specified in the AqT3ReadParameters structure.

Parameters

Input

Output

Return Value

Read Parameters in AqT3ReadParameters

Name Type Description
instrumentI
D

ViSession Instrument identifier

channel ViInt32 Reserved for future use (must be set to 0)
readPar AqT3ReadParameters Requested parameters for the acquired data.

Name Type Description
dataDesc AqT3DataDescriptor Data descriptor structure needed for

interpretation

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
dataArray ViAddr User-allocated time value data buffer .
dataSizeInBytes ViUInt32 Number of bytes in the user-allocated dataArray.

Used for verification / protection. See discussion
for required size.

nbrSamples ViInt32 Number of samples requested. For the TC890 it is
used for the maximum number of 4-byte structures
to be returned by the read (see dataType = 4
discussion below)

dataType ViInt32 Type representation of the data
4 = ReadRawData = raw format = 4 bytes as used
 for the TC890 TOF mode
3 = ReadReal64 = 64-bit (double) = 8 bytes
2 = ReadInt32 = 32-bit (integer) = 4 bytes TC840
only

readMode ViInt32 0 = AqT3ReadStandard = standard readout mode
1 = AqT3ReadContinuous = TOF mode - TC890
only

reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

Device Driver Function Reference 2

Programmer’s Reference Manual 239

240 Programmer’s Reference Manual

2 Device Driver Function Reference

Data Descriptor AqT3DataDescriptor

Discussion

All structures used in this function can be found in the header files
AcqirisT3Interface.h and AcqirisDataTypes.h.

The type of the dataArray is determined from the AqT3ReadParameters struct
entry dataType.

• dataType = 4 is used for raw data. For example, the 32-bit natural readout of the
TC890 TOF multihit mode is of AqT3SampleType AqT3Struct50ps6ch and has the
following format:

where

Channel = 1…6 denotes the physical channels.
Data = an integer giving the time value in units of 50 ps

Channel = 0 is for the start of the next event.
Data = an integer giving the count of the common start within the current acquisition

Channel = 7 is for marker data.
Data = 0 : Switch from Auxiliary inputs (I/O Aux 1 or I/O Aux 2)
 = 1 : Switch marker: Common channel Event count.
 = 2 : Switch marker: Memory Full.
 = 16 : Marker from Auxiliary inputs (I/O Aux 1 or I/O Aux 2)

• dataType = 3 is used for double floating-point format time results. These results are
always in seconds. A value of 1e10 is a sign that the channel in question did not see a
stop.

• dataType = 2 is used for integer format time results. These results are always in
multiples of the granularity given by the AqT3SampleType value of
AqT3Count50psInt32. A value of 0 is a sign that the channel in question did not see a
stop.

Name Type Description
dataPtr ViAddr Pointer to time value data buffer.

May differ from dataArray above!
nbrSamples ViInt32 Number of samples returned
sampleSize ViInt32 Size in bytes of the time data format in use
sampleType ViInt32 Type of the returned samples, see

AqT3SampleType
flags ViInt32 For TC890 ONLY

Bit 0: Internal memory overflow flag
Bit 1: External memory overflow flag

reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

31 28-30 0-27
Overflow Channel Data

Device Driver Function Reference 2

Programmer’s Reference Manual 241

This means that for the TC840/TC842

• single hit mode - dataSizeInBytes =104 bytes for TC840,
 416 bytes for TC842

• multi-start mode - dataSizeInBytes = 52KB = 53248 bytes

and for the TC890 you must configure dataSizeInBytes as a function of the number
of expected values, including the start, and markers counting 4 bytes for each. The
worst case is the full bank of 8MB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the
previous call of the readData routine.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_readData(ViSession instrumentID,
ViInt32 channel, AqT3ReadParameters* readPar,
AqT3DataDescriptor* dataDesc);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Read Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

Visual Basic .NET Representation

See AcqrsT3_readDataInt32 or AcqrsT3_readDataReal64

MATLAB MEX Representation

[status dataDesc dataArray] = AqT3_readData(instrumentID, channel, readPar)

NOTE The dataSizeInBytes must fulfill the storage requirement for the raw
data read from the device.

242 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_readDataInt32

Purpose

Returns all Time-to-Digital Converter information for a TC840 or TC890. The
sample data is returned in a model dependent form and as specified in the
AqT3ReadParameters structure.

Parameters

Input

Output

Return Value

Read Parameters in AqT3ReadParameters

Name Type Description
instrumentI
D

ViSession Instrument identifier

channel ViInt32 Reserved for future use (must be set to 0)
readPar AqT3ReadParameters Requested parameters for the acquired data.

Name Type Description
dataArrayP ViInt32* Data array pointer
dataDesc AqT3DataDescriptor Data descriptor structure needed for

interpretation

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
dataArray ViAddr Unused - set to NULL .
dataSizeInBytes ViUInt32 Number of bytes in the user-allocated dataArray.

Used for verification / protection. See discussion
for required size.

nbrSamples ViInt32 Number of samples requested. For the TC890 it is
used for the maximum number of 4-byte structures
to be returned by the read (see dataType = 4
discussion below)

dataType ViInt32 Type representation of the data
4 = ReadRawData = raw format = 4 bytes as used
 for the TC890 TOF mode
2 = ReadInt32 = 32-bit (integer) = 4 bytes

readMode ViInt32 0 = AqT3ReadStandard = standard readout mode
1 = AqT3ReadContinuous = TOF mode - TC890
only

reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

Device Driver Function Reference 2

Programmer’s Reference Manual 243

Data Descriptor AqT3DataDescriptor

Discussion

All structures used in this function can be found in the header files
AcqirisT3Interface.h and AcqirisDataTypes.h.

The type of the dataArray is determined from the AqT3ReadParameters struct
entry dataType.

dataType = 4 is used for raw data. For example, the 32-bit natural readout of the
TC890 TOF multihit mode is of AqT3SampleType AqT3Struct50ps6ch and has the
following format:

where

Channel = 1…6 denotes the physical channels. The Data bits give the time value in
units of 50 ps

 0 is for the start of the next event. In this case the Data bits give the count of the
common start within the current acquisition

Channel = 7 is for marker data.
Data = 0 : Switch from Auxiliary inputs (I/O Aux 1 or I/O Aux 2)
 = 1 : Switch marker: Common channel Event count.
 = 2 : Switch marker: Memory Full.
 = 16 : Marker from Auxiliary inputs (I/O Aux 1 or I/O Aux 2)

dataType = 2 is used for integer format time results. These results are always in
multiples of the granularity given by the AqT3SampleType value of
AqT3Count50psInt32.

Name Type Description
dataPtr ViInt32 Not relevant in this context and should be ignored
nbrSamples ViInt32 number of samples returned
sampleSize ViInt32 Size in bytes of the time data format in use
sampleType ViInt32 type of the returned samples, see

AqT3SampleType
flags ViInt32 For TC890 ONLY

Bit 0: Internal memory overflow flag
Bit 1: External memory overflow flag

reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

31 28-30 0-27
Overflow Channel Data

244 Programmer’s Reference Manual

2 Device Driver Function Reference

This means that for the TC840

single hit mode - 104 bytes
multi-start mode - 52KB = 53248 bytes

and for the TC890 you must configure it as a function of the number of expected
values, including the start, and markers counting 4 bytes for each. The worst case is
the full bank of 8MB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the
previous call of the readData routine.

The allocated data array must be 32-bit aligned. If it is not an error status will be
generated.

NOTE The dataSizeInBytes must fulfill the storage requirement for the raw
data read from the device.

Device Driver Function Reference 2

Programmer’s Reference Manual 245

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_readDataInt32(ViSession instrumentID,
ViInt32 channel, AqT3ReadParameters* readPar,
ViInt32* dataArrayP, AqT3DataDescriptor* dataDesc);

LabVIEW Representation

Use the polymorphic Acqiris Tx.lvlib: (or Aq Tx) Read Data.vi

Visual Basic .NET Representation

AcqrsT3_readDataInt32 (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqT3ReadParametersInt32, _
 ByRef dataArrayP As Int32, _
 ByRef dataDesc As AqT3DataDescriptorInt32) As Int32

Where

 Public Structure AqT3ReadParametersInt32
 Public dataArray As Int32 ' Pointer to user allocated memory
 Public dataSizeInBytes As UInt32 ' Size of user allocated memory in bytes
 Public nbrSamples As Int32 ' Number of samples requested
 Public dataType As Int32 ' Use 'enum AqReadType' defined above
 Public readMode As Int32 ' Use 'enum AqT3ReadModes' defined below
 Public reserved3 As Int32 ' Reserved, must be 0
 Public reserved2 As Int32 ' Reserved, must be 0
 Public reserved1 As Int32 ' Reserved, must be 0
 End Structure

MATLAB MEX Representation

[status dataDesc dataArray] = AqT3_readData(instrumentID, channel, readPar)

246 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_readDataReal64

Purpose

Returns all Time-to-Digital Converter information. The sample data is returned in a
model dependent form and as specified in the AqT3ReadParameters structure.

Parameters

Input

Output

Return Value

Read Parameters in AqT3ReadParameters

Name Type Description
instrumentI
D

ViSession Instrument identifier

channel ViInt32 Reserved for future use (must be set to 0)
readPar AqT3ReadParameters Requested parameters for the acquired data.

Name Type Description
dataArrayP ViReal64* Data array pointer
dataDesc AqT3DataDescriptor Data descriptor structure needed for

interpretation

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
dataArray ViAddr Unused - set to NULL .
dataSizeInBytes ViUInt32 Number of bytes in the user-allocated dataArray.

Used for verification / protection. See discussion
for required size.

nbrSamples ViInt32 Number of samples requested. For the TC890 it is
used for the maximum number of 4-byte structures
to be returned by the read (see dataType = 4
discussion below)

dataType ViInt32 Type representation of the data
3 = ReadReal64 = 64-bit (double) = 8 bytes

readMode ViInt32 0 = AqT3ReadStandard = standard readout mode
reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

Device Driver Function Reference 2

Programmer’s Reference Manual 247

Data Descriptor AqT3DataDescriptor

Discussion

All structures used in this function can be found in the header files
AcqirisT3Interface.h and AcqirisDataTypes.h.

The type of the dataArray is determined from the AqT3ReadParameters struct
entry dataType.

dataType = 3 is used for double floating-point format time results. These results are
always in seconds.

This means that for the TC840/TC842

single hit mode - 104 bytes for TC840, 416 bytes for TC842

multi-start mode - 52KB = 53248 bytes

and for the TC890 you must configure it as a function of the number of expected
values, including the start, and markers counting 4 bytes for each. The worst case is
the full bank of 8MB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the
previous call of the readData routine.

The allocated data array must be 32-bit aligned. If it is not an error status will be
generated.

Name Type Description
dataPtr ViAddr Not relevant in this context and should be ignored
nbrSamples ViInt32 number of samples returned
sampleSize ViInt32 Size in bytes of the time data format in use
sampleType ViInt32 type of the returned samples, see

AqT3SampleType
flags ViInt32 Unused
reserved3 ViInt32 Reserved for future use
reserved2 ViInt32 Reserved for future use
reserved1 ViInt32 Reserved for future use

NOTE The dataSizeInBytes must fulfill the storage requirement for the raw
data read from the device.

248 Programmer’s Reference Manual

2 Device Driver Function Reference

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_readDataReal64(ViSession instrumentID,
ViInt32 channel, AqT3ReadParameters* readPar,
ViReal64* dataArrayP, AqT3DataDescriptor* dataDesc);

LabVIEW Representation

Use the polymorphic Acqiris Tx.lvlib: (or Aq Tx) Read Data.vi

Visual Basic .NET Representation

AcqrsT3_readDataReal64 (ByVal instrumentID As Int32, _
ByVal channel As Int32, _
ByRef readPar As AqT3ReadParametersInt32, _
ByRef dataArrayP As Double, _
ByRef dataDesc As AqT3DataDescriptorInt32) As Int32

MATLAB MEX Representation

[status dataDesc dataArray] = AqT3_readData(instrumentID, channel, readPar)

Device Driver Function Reference 2

Programmer’s Reference Manual 249

AcqrsT3_stopAcquisition

Purpose

Stops the acquisition.

Parameters

Input

Return Value

Discussion

This function will stop the acquisition and not return until this has been
accomplished.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_stopAcquisition(ViSession instrumentID);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Stop Acquisition.vi

Visual Basic .NET Representation

AcqrsT3_stopAcquisition (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = AqT3_stopAcquisition(instrumentID)

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

250 Programmer’s Reference Manual

2 Device Driver Function Reference

AcqrsT3_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters

Input

Return Value

Discussion

This function will return only after the acquisition has terminated or when the
requested timeout has elapsed, whichever comes first. For protection, the timeout is
clipped to a maximum value of 10 seconds. If a larger timeout is needed, call this
function repeatedly.While waiting for the acquisition to terminate, the calling thread
is put into 'idle', permitting other threads or processes to fully use the CPU.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_waitForEndOfAcquisition (ViSession instrumentID, ViInt32 timeout);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Wait For End Of Acquisition.vi

Visual Basic .NET Representation

AcqrsT3_ waitForEndOfAcquisition (ByVal instrumentID As Int32, _
ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = AqT3_waitForEndOfAcquisition(instrumentID, timeOut)

Name Type Description
instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

	Foreword
	TABLE OF CONTENTS
	Introduction
	Message to the User
	Using this Manual
	Conventions Used in This Manual
	Warning Regarding Medical Use
	Warranty
	Warranty and Repair Return Procedure, Assistance and Support
	System Requirements

	Device Driver Function Reference
	Status values and Error codes
	API Function classification
	AcqirisInterface.h functions
	AcqirisD1Interface.h functions
	AcqirisT3Interface.h functions

	API Function descriptions
	Acqrs_calibrate
	Acqrs_calibrateCancel
	Acqrs_calibrateEx
	Acqrs_calLoad
	Acqrs_calRequired
	Acqrs_calSave
	Acqrs_close
	Acqrs_closeAll
	Acqrs_configLogicDevice
	Acqrs_errorMessage
	Acqrs_getDevType
	Acqrs_getDevTypeByIndex
	Acqrs_getInstrumentData
	Acqrs_getInstrumentInfo
	Acqrs_getNbrChannels
	Acqrs_getNbrInstruments
	Acqrs_getVersion
	Acqrs_init
	Acqrs_InitWithOptions
	Acqrs_logicDeviceIO
	Acqrs_powerSystem
	Acqrs_reset
	Acqrs_resetMemory
	Acqrs_resumeControl
	Acqrs_setAttributeString
	Acqrs_setLEDColor
	Acqrs_setSimulationOptions
	Acqrs_suspendControl
	AcqrsD1_accumulateData
	AcqrsD1_acqDone
	AcqrsD1_acquire
	AcqrsD1_acquireEx
	AcqrsD1_averagedData
	AcqrsD1_bestNominalSamples
	AcqrsD1_bestSampInterval
	AcqrsD1_calibrate (DEPRECATED)
	AcqrsD1_calibrateEx (DEPRECATED)
	AcqrsD1_close (DEPRECATED)
	AcqrsD1_closeAll (DEPRECATED)
	AcqrsD1_configAvgConfig
	AcqrsD1_configAvgConfigInt32
	AcqrsD1_configAvgConfigReal64
	AcqrsD1_configChannelCombination
	AcqrsD1_configControlIO
	AcqrsD1_configExtClock
	AcqrsD1_configFCounter
	AcqrsD1_configHorizontal
	AcqrsD1_configLogicDevice (DEPRECATED)
	AcqrsD1_configMemory
	AcqrsD1_configMemoryEx
	AcqrsD1_configMode
	AcqrsD1_configMultiInput
	AcqrsD1_configSetupArray
	AcqrsD1_configTrigClass
	AcqrsD1_configTrigSource
	AcqrsD1_configTrigTV
	AcqrsD1_configVertical
	AcqrsD1_errorMessage
	AcqrsD1_errorMessageEx
	AcqrsD1_forceTrig
	AcqrsD1_forceTrigEx
	AcqrsD1_freeBank
	AcqrsD1_getAvgConfig
	AcqrsD1_getAvgConfigInt32
	AcqrsD1_getAvgConfigReal64
	AcqrsD1_getChannelCombination
	AcqrsD1_getControlIO
	AcqrsD1_getExtClock
	AcqrsD1_getFCounter
	AcqrsD1_getHorizontal
	AcqrsD1_getInstrumentData (DEPRECATED)
	AcqrsD1_getInstrumentInfo (DEPRECATED)
	AcqrsD1_getMemory
	AcqrsD1_getMemoryEx
	AcqrsD1_getMode
	AcqrsD1_getMultiInput
	AcqrsD1_getNbrChannels (DEPRECATED)
	AcqrsD1_getNbrPhysicalInstruments (DEPRECATED)
	AcqrsD1_getSetupArray
	AcqrsD1_getTrigClass
	AcqrsD1_getTrigSource
	AcqrsD1_getTrigTV
	AcqrsD1_getVersion (DEPRECATED)
	AcqrsD1_getVertical
	AcqrsD1_init (DEPRECATED)
	AcqrsD1_InitWithOptions (DEPRECATED)
	AcqrsD1_logicDeviceIO (DEPRECATED)
	AcqrsD1_multiInstrAutoDefine
	AcqrsD1_multiInstrDefine
	AcqrsD1_multiInstrUndefineAll
	AcqrsD1_procDone
	AcqrsD1_processData
	AcqrsD1_readData
	AcqrsD1_readFCounter
	AcqrsD1_reportNbrAcquiredSegments
	AcqrsD1_reset (DEPRECATED)
	AcqrsD1_resetDigitizerMemory
	AcqrsD1_restoreInternalRegisters
	AcqrsD1_setAttributeString (DEPRECATED)
	AcqrsD1_setLEDColor (DEPRECATED)
	AcqrsD1_setSimulationOptions (DEPRECATED)
	AcqrsD1_stopAcquisition
	AcqrsD1_stopProcessing
	AcqrsD1_waitForEndOfAcquisition
	AcqrsD1_waitForEndOfProcessing
	AcqrsT3_acqDone
	AcqrsT3_acquire
	AcqrsT3_configAcqConditions
	AcqrsT3_configChannel
	AcqrsT3_configControlIO
	AcqrsT3_configMemorySwitch
	AcqrsT3_configMode
	AcqrsT3_forceTrig
	AcqrsT3_getAcqConditions
	AcqrsT3_getChannel
	AcqrsT3_getControlIO
	AcqrsT3_getMemorySwitch
	AcqrsT3_getMode
	AcqrsT3_readData
	AcqrsT3_readDataInt32
	AcqrsT3_readDataReal64
	AcqrsT3_stopAcquisition
	AcqrsT3_waitForEndOfAcquisition

